
Computer Communications 163 (2020) 186–194

A
f
Y
a

b

c

A

K
E
D
N
K

1

(
l
i
b
a
d
V
m
d
a
t
o
o
p
W
n

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

deep neural network compression algorithm based on knowledge transfer
or edge devices
anming Chen a, Chao Li b,∗, Luqi Gong b, Xiang Wen a, Yiwen Zhang a, Weisong Shi c

School of Computer Science, Anhui University, Hefei, China
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
Department of Computer Science, Wayne State University, Detroit, MI, USA

R T I C L E I N F O

eywords:
dge device
eep learning
eural network compression
nowledge transfer

A B S T R A C T

The computation and storage capacity of the edge device are limited, which seriously restrict the application of
deep neural network in the device. Toward to the intelligent application of the edge device, we introduce the
deep neural network compression algorithm based on knowledge transfer, a three-stage pipeline: lightweight,
multi-level knowledge transfer and pruning that reduce the network depth, parameter and operation complexity
of the deep learning neural networks. We lighten the neural networks by using a global average pooling layer
instead of a fully connected layer and replacing a standard convolution with separable convolutions. Next,
the multi-level knowledge transfer minimizes the difference between the output of the "student network" and
the "teacher network" in the middle and logits layer, increasing the supervised information when training
the "student network". Lastly, we prune the network by cutting off the unimportant convolution kernels
with a global iterative pruning strategy. The experiment results show that the proposed method improve the
efficiency up to 30% than the knowledge distillation method in reducing the loss of classification performance.
Benchmarked on GPU (Graphics Processing Unit) server, Raspberry Pi 3 and Cambricon-1A, the parameters
of the compressed network after using our knowledge transfer and pruning method have achieved more than
49.5 times compression and the time efficiency of a single feedforward operation has been improved more
than 3.2 times.
. Introduction

With the advancement of Edge Computing and Internet of Things
IoT) technologies, edge devices are becoming more and more intel-
igent [1–4]. In order to make these edge devices more intelligent,
t is necessary to consider deep learning [5], which has achieved
reakthrough achievements in many fields such as computer vision [6],
nd natural language processing [7]. In recent years, more and more
eep neural network models have been proposed, such as AlexNet [8],
GGNet [9], GoogLeNet [10] and ResNet [11], which are becoming
ore and more accurate in target recognition and getting deeper and
eeper. The deep neural network has the characteristics of deep layers
nd large parameters, which will bring huge storage cost and computa-
ional overhead. However, the computing power and storage capacity
f the end devices are limited, which seriously restricts the application
f deep neural networks to the edge devices. Table 1 shows the depth,
arameters and computation amount of some classical neural networks.
e can see that the computation and storage cost of deep neural

etworks are very expensive. There are some approaches to relieve this

∗ Corresponding author.
E-mail addresses: cym@ahu.edu.cn (Y. Chen), lichao@ict.ac.cn (C. Li), zhangyiwen@ahu.edu.cn (Y. Zhang), weisong@wayne.edu (W. Shi).
URLs: http://iacs.ahu.edu.cn (Y. Chen), http://www.ict.ac.cn (C. Li), http://weisongshi.org (W. Shi).

problem, such as, Zhang et al. proposed a new deep learning-based
model, called LDCF, which can effectively learn the high-dimensional
and nonlinear relationships between users and services [12], Xu et al.
solved the collaborative quantification and placement of edge servers
for IoV service offloading with a novel approach combining clustering
algorithms and genetic algorithm (GA), which optimized the population
initialization of GA and reduced the chance of being trapped in local op-
timum [3]. In addition, Han et al. [13] show that deep neural networks
running on edge devices will increase memory access and consume a
lot of battery power. Cloud computing can run deep neural networks
at the cloud and provide cloud services [14,15] for the edge devices.
For example, Qi et al. utilized Locality-Sensitive Hashing technique to
protect the sensitive information of users involved in cross-platform
big data integration, which provides an effective and promising way
for securing user privacy in various edge-based business applications
or systems [4]. But these intelligent applications may encounter high
network latency, and high power consumption.

Since the deep neural network cannot run directly on the edge de-
vices and the cloud computing service is not suitable for edge devices,
ttps://doi.org/10.1016/j.comcom.2020.09.016
eceived 29 May 2020; Received in revised form 13 August 2020; Accepted 22 Sep
vailable online 28 September 2020
140-3664/© 2020 Elsevier B.V. All rights reserved.
tember 2020

https://doi.org/10.1016/j.comcom.2020.09.016
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.09.016&domain=pdf
mailto:cym@ahu.edu.cn
mailto:lichao@ict.ac.cn
mailto:zhangyiwen@ahu.edu.cn
mailto:weisong@wayne.edu
http://iacs.ahu.edu.cn
http://www.ict.ac.cn
http://weisongshi.org
https://doi.org/10.1016/j.comcom.2020.09.016

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194

a

w
t
r
o
d
c
c
s
t
a
b
t
p
b
l
s
s
c
c
t
t
o
n
d
p
d
I
l
p
m
i
m
m
t
e
2

Table 1
Deep neural network parameter.

DNN Depth Size (MB) Computation
times
(Millions)

Parameters
(Millions)

AlexNet 8 200 720 60
VGG-16 16 550 15 300 138
GoogLeNet 22 50 1550 6.8
ResNet 101 170 11 300 42

Fig. 1. The three stage compression pipeline of the deep neural network compression
lgorithm based on knowledge transfer.

e consider compressing the deep neural network and running it on
he edge devices. Deep neural network compression can effectively
educe the parameter amount and reduce its computational and storage
verhead while the performance of the network model is slightly re-
uced [16]. The knowledge transfer method is a mainstream approach
ompressing the deep neural network and it can realize neural network
ompression without additional runtime library or special hardware
upport [17]. But there are three problems in existing knowledge
ransfer methods: the parameters of the designed neural network model
re still large; the accuracy of the compressed network model is still far
ehind of other compression methods; there is still redundant parame-
ers in the compressed network model. In order to solve the above three
roblems, we propose the deep neural network compression algorithm
ased on knowledge transfer with three stages: lightweight, multi-
evel knowledge transfer and pruning. The pipeline of our method is
hown in Fig. 1. Lightweight designs a compact ‘‘student network’’
tructure that uses a global average pooling layer instead of a fully
onnected layer and replaces a standard convolution with separable
onvolutions. Multi-level knowledge transfer learns network changes in
he middle layers and adds the soft target with the random factors to
he logits layer to increase the supervised information in the process
f training and improve the classification accuracy of the ‘‘student
etwork’’ model trained, reduce the loss of classification performance
ue to compression of neural networks. Through experiments, the
roposed method improve the accuracy up to 30% than the knowledge
istillation method in reducing the loss of classification performance.
n the pruning stage, the ‘‘student network’’ model compressed by the
ightweight and multi-level knowledge transfer method is used as a
runing model and the data-independent convolution kernel evaluation
ethod is used to evaluate the importance of each convolution kernel

n the pruning model, using a channel-based pruning. The pruning
ethod cuts off the unimportant convolution kernels in the pruning
odel and uses a global iterative pruning strategy. Experiments show

hat this pruning method can further reduce 30% of network param-
ters and shorten the time of a single feed forward execution time of
5%.

The main contributions of this paper are proposing the deep neu-
ral network compression algorithm based on knowledge transfer with
three stages: lightweight, multi-level knowledge transfer and pruning
that reduce the network depth, parameter and operation complexity
of the deep learning model, taking special care of the issues of the
computation and storage capacity of the edge device, and comparing
187
target classification on different hardware with the proposed method.
The remainder of this paper is organized as follows. In Section 2,
selected related work is reviewed. We present the design of lightweight
method, the multi-level knowledge transfer and the pruning approach
in Sections 3, 4 and 5, respectfully. In Section 6, we present extensive
experiment results. Finally, we conclude this paper in Section 7.

2. Related work

Various deep model compression methods have been developed re-
cently to compress deep learning model. These methods can be broadly
categorized into four major categories: parameter sharing methods,
network pruning methods, knowledge transfer (teacher–student meth-
ods) and low-rank approximation methods. Parameter sharing method
is also called parameter quantization method. It refers to selecting a
number of representatives in the weight parameter, and using these
representatives to represent the specific values of a group of weights.
This method only saves the values of these representatives, while the
weight matrix only needs to save the index corresponding to each
parameter, thus greatly reducing the storage cost. Chen et al. [18] pro-
posed a HashedNets method that uses a low-cost hash function to group
weights into hash buckets to share parameters where each hash bucket
denotes a single parameter. Gong et al. [19] used k-means clustering to
quantize the weights in fully connected layers and achieved up to 24x
compression rate for their CNN network with only 1% loss on accuracy
on the ImageNet challenge. Courbariaux et al. [20] proposed a binary
neutral network to quantify the weight of the network, the value of
the restriction weight can only be −1 or 1, which greatly simplified the
design of hardware dedicated to deep learning.

Network pruning method refers to deleting redundant parameters
in the network and improving network generalization capability [21].
Based on this circular pruning framework, Han et al. [22] put forward a
simple and effective strategy. The disadvantage of this method is that
the network connection after pruning has no continuity in the distri-
bution, which lead to frequent handover between Central Processing
Unit (CPU) cache and memory, which restricted the actual acceleration
effect.

The idea of low rank approximation is to reconstruct the dense
matrix from a few small matrix approximations. Denil et al. [16]
used low rank approximation to compress the weights of different
layers. Given the weight matrix, it is expressed as a combination of
several low rank matrices, so that the calculation of the product of the
matrix can greatly reduce the overall storage and computing overhead.
Denton et al. [23] proposed the use of singular value decomposition
to reconstruct the weight of all connected layers and decompose the
weight matrix by SVD(Singular Value Decomposition). Combined with
some other techniques, the convolution layer can be compressed 2–3
times by matrix decomposition, 5–13 times the total connection layer
and 2 times the speed, and the loss of precision is controlled within 1%.

Knowledge transfer is also called teacher–student training. The main
idea is to adopt a teacher–student strategy and use a pre-trained deep
network to train a shallow network on the same task [17]. Bucilu
et al. [24] first proposed this idea. They used a comprehensive net-
work of trained deep-level network models to mark some unlabeled
simulation data and used this data to train a new network. This new
network showed better performance than training with raw data. Ba
et al. [25] believed that the input of the softmax layer contained more
supervised information than the data label, and should allowed the
shallow model to imitate the deep model. However, the total amount
of parameters in this method has not been significantly reduced and
the effect is limited. Hinton et al. [26] thought that the output of the
softmax layer would be a better choice. It contained the prediction
probabilities for each category and can be considered as a soft label.
They used a hyper parameter 𝑇 to control the degree of smoothness of
the predicted probability.

The above comparison found that the four methods using differ-
ent compression ideas can reduce the size of the network. Parameter

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194

s
t
t
r
o
l
h
a
p
t
w
k

3

c
s
i
t
c
c

3

t
p
t
n
A
c
m
l
i
i
b
w
c
n

v
t
c
d
o
p
w
n
t
t
p
t
n
o

Fig. 2. Fully Connected Layers vs Global average pooling.
haring method, network pruning method and low-rank approxima-
ion method have focused on reducing only the storage complexity of
he deep models. The compressed models must be decompressed at
untime, which restricts the deployability of such compressed models
n mobile devices. The knowledge transfer method has learned a
ightweight network. It does not require special running libraries or
ardware to reduce the running time complexity, facilitate deployment
t the object device and has better versatility. Considering the com-
lexity of the running time and the ease of deployment, the knowledge
ransfer method is more suitable for the scene of the object. Therefore,
e research the deep neural network compression method based on
nowledge transfer and hope to improve the efficiency of method.

. Lightweight

Lightweight is designed from the perspective of both the fully
onnected layer and the convolution layer. They can greatly reduce the
torage and computational cost of deep neural network without reduc-
ng the classification accuracy. Reducing storage cost requires reducing
he amount of parameters in fully connected layer, while reducing
omputational cost requires reducing the amount of computation of
onvolution layer.

.1. Lightweight fully connected layer

In order to reduce the storage cost of deep neural network, we need
o reduce the parameters in fully connected layer. For reducing the
arameter amount of the final compressed network, the most important
hing is to reduce the parameter amount in the structure of the student
etwork. It can be seen from Table 2 that the total parameter amount in
lexNet is more than 60 million and the parameter amount of the fully
onnected layer is more than 96% of the total parameter amount. For
ost convolutional neural networks, the amount of the fully connected

ayer parameters is more than 70% of the total parameters. Therefore,
n order to reduce the amount of parameters in the ‘‘student network’’,
t is necessary to reduce the use of full-connection layers. In this paper,
y analyzing the structure of the deep neural network in recent years,
e find that using the global average pooling layer instead of the fully

onnected layer can effectively reduce the parameter amount of the
eural network.

The amount of the parameters for the fully connected layer are
ery large, especially the first fully connected layer directly connected
o the convolution layer. On the one hand, it will increase the cal-
ulation complexity and the computation complexity in the forward
erivation process; on the other hand, too many parameters may cause
ver-fitting. Replacing the full connection layer with a global average
ooling layer can reduce the amount of neural network parameters
hile maintaining the function of the fully connected layer. In the
eural network, the workflow of the fully connected layer is to merge
he upper-layer output feature map to obtain the vector, then calculate
he inner-product output. As we can see from Fig. 2, the global average
ooling layer simplifies this process and calculate feature map averages
o get the output. The global average pooling layer greatly reduces the
umber of parameters in the deep neural network and reduces the risk

f overfitting.

188
3.2. Lightweight convolution layer

In this paper, by analyzing the universal convolutional neural net-
works in recent years, it is found that most of the computation of the
convolutional neural networks is occupied by two parts, which are the
convolution layer and the fully connected layer. By the distribution
of the AlexNet calculation amount, it can be calculated that in the
AlexNet, more than 90% of the computation is in the convolution
layer. One of the reasons is that there are many layers of convolution
layers in deep neural networks. Another reason is that in the AlexNet,
the convolution kernel size is large, which leads to the ratio of the
calculation of the convolution layer to the parameter amount larger
than the fully connected layer, so that the convolution layer occupies
92% of the calculation cost with 3.77% of the parameter. There are
many layers in convolution layers of deep neural network, which is the
foundation of deep neural network. Only if the number of convolution
layers is large enough, the deep neural network’s expression ability
can be strong enough, and the deep neural network model’s prediction
accuracy can be high. Therefore, in order to reduce the computation
cost of the deep neural network model, it is necessary to reduce
the number of large convolution kernels. To reduce the number of
large convolutional kernels, we take two methods. One method is to
decompose large convolution kernels into small convolution kernels
and the other uses separable convolutions [27] instead of standard
convolutions. The standard convolution has two effects, one is to space
aggregation and the other is to change dimensions. Space aggregation
is the result of convolution, which is calculated by the convolution
kernel on a sliding window. The dimension transformation means that
the number of channels output by each convolutional layer, which can
be changed according to needs. The parameters of the convolution
layer are related to the size of the convolution kernel, the number
of input channels, and the number of output channels. Instead of
replacing convolution kernels, we reduce the number of parameters in
the convolution layer by changing the number of channels.

4. Multi-level knowledge transfer

In order to solve the problem of the lack of supervised informa-
tion in the knowledge transfer method, multi-level knowledge transfer
method is used during the training process, which can improve the
classification accuracy of ‘‘student network’’. The method of multi-layer
knowledge transfer uses a combination of the middle layer learning
and logits layer learning. The whole framework is shown in Fig. 3.
The middle layer refers to the hidden layer before the logits layer of
the deep neural network. The output of these layers is the feature map
learned by the neural network. The logits layer is the output of the layer
before softmax activation.

4.1. Middle layer learning

In the middle layer, it learned the network variety, which means

that we can make the output feature map from the middle layer of

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194

t
o
t
l
m
m
c
n
t
t
n

a
w
t
n
l
c
m
F
t
W
m
o
o
l
a
o
t
‘
t
v
v
i
d
‘
d
i
n
o

Table 2
Alexnet parameters.

Layer Parameter shape Parameter amount The ratio of parameters

Convolution layer 1 3*11*11*96 34 848 0.01%
Convolution layer 2 48*5*5*256 307 200 0.50%
Convolution layer 3 256*3*3*384 884 736 1.45%
Convolution layer 4 384*3*3*192 663 552 1.09%
Convolution layer 5 192*3*3*256 442 368 0.72%
Fully connected Layer 1 256*6*6*4096 37 748 736 62%
Fully connected Layer 2 4096*4096 16 777 216 28%
Fully connected Layer 3 4096*1000 4 096 000 6.70%
Fig. 3. Knowledge transfer learning framework.

he ‘‘student network’’ learn the feature map from the middle layer
f the ‘‘teacher network’’. The network variety refers to the variety of
he feature map extracted when the data passes through the middle
ayer of the neural network, that is, the difference between the feature
ap extracted by the convolution layer when the data first enters the
iddle layer and leaves the middle layer. Deeper networks are more

apable of changing the network and are more accurate. The ‘‘teacher
etwork’’ becomes deeper. There are more nonlinear transformation in
he network and it has stronger network expression. So the classifica-
ion accuracy of the ‘‘teacher network’’ trained from the same data is
ormally higher than that of the student network.

In order to make the classification of ‘‘student network’’ more
ccurate, we need to improve the ability of sensing network variety,
hich is equivalent to increasing the depth of network. By learning

he network variety, the ‘‘student network’’ can learn the ‘‘teacher
etwork’’ transformation. This method is more effective than simply
earning the output of the middle layer of the ‘‘teacher network’’ that
an improve the expression ability of ‘‘student network’’. The specific
ethod for learning network variety in the middle layer are shown in

ig. 4. In the upper part of Fig. 4, the deeper network depth represents
he ‘‘teacher network’’, while the lower part is the ‘‘student network’’.

hen the data in the ‘‘teacher network’’ has just entered layer 1 in the
iddle layer, the feature map m1 extracted from this layer is taken

ut. When the data reaches the layer 3 through the network variety
f the middle layer in the teacher network, the feature map m2 of the
ayer is extracted. Next, the feature map m1 and the feature map m2
re introduced into a function Dis for network variety calculating. The
utput C1 is the network variety of the data in the middle layer of
he ‘‘teacher network’’. The same operations are also performed in the
‘student network’’. The function Dis outputs the network variety C2
hrough the middle layer of the ‘‘student network’’. Next, the network
ariety C1 in the middle layer of the ‘‘teacher network’’ and network
ariety C2 in the middle layer of the ‘‘student network’’ are introduced
nto the Loss function for difference calculating. This can calculate the
ifference loss1 of the middle layer network variety ability between the

‘student network’’ and the ‘‘teacher network’’. Lastly, the calculated
ifference loss1 is transmitted back to the layer 3 of the middle layer
n the ‘‘student network’’ or back propagation during the ‘‘student
etwork’’ training process. After optimizing the iterative training based

n the gradient descent method [28], the difference loss1 will become

189
Fig. 4. The middle layer learning.

smaller and smaller. This indicates that the ‘‘student network’’ has
gradually learned the ability of network variety of the teacher network,
which means that the ‘‘student network’’ has the ability to express
the network of the deep network. Then the next middle layer will be
optimized. This is the process of learning network variety in the middle
layer.

In the middle-layer learning process, there are two functions that
play an important role. The first is the ‘‘Dis’’ function that calculates
the network variety between the layers in the middle layer of the deep
neural network. The second is the Loss function that calculates the
network variety difference between the ‘‘teacher network’’ and the ‘‘stu-
dent network’’ in the same layer. The Dis function is used to measure
network variety. In this study, we denote a function with lower com-
putational complexity as Eq. (1). 𝑙𝑗 represents the output of the layer
whose depth is 𝑗𝑓 . 𝑙𝑗 and 𝑘 denote the feature map of the 𝑘th channel
output by the layer whose depth is 𝑗. The function 𝑟() is a regression
function that adjusts the dimensions of the feature map dimension in
the 𝑖th layer to be the same with the 𝑗th layer [29]. After calculating
the sum of the network layer difference, the sigmoid function is used to
adjust the range of the difference. In this way, the ‘‘student network’’
can learn teacher network’s network variety ability better. We can use
a universal numerical difference function to calculate the loss function
calculating the difference between network variety. In order to simplify
the solution process, we choose the Euclidean distance with lower
computational complexity, shown in Eq. (2). By these two function
modules, we can efficiently calculate the neural network’s network
variety and the network variety difference between ‘‘student network’’
and teacher network.

Di𝑠𝑖,𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
∑

(𝑙𝑗 − 𝑟(𝑙𝑖))) =
1

1 + 𝑒−
∑𝑚

𝑘=1 (𝑙𝑗,𝑘−𝑟(𝑙𝑖,𝑘))
(1)

𝑙𝑜𝑠𝑠(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) =
√

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑦𝑖)

2 (2)

4.2. Logits layer learning

In the multi-level knowledge transfer method, the soft target with
random factor is added at the logits layer [26]. This paper uses the
original optimization objective and soft target optimization objective
together to form the final optimization objective, as in Eq. (3). 𝑇 𝑒𝑎 is
the logits layer output of the ‘‘teacher network’’, 𝑆𝑡𝑢 is the logits layer

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194

u
o
t

output of the ‘‘student network’’. 𝑉 is the label in the input data. The
optimization objective 𝐿𝑘𝑑 consists of two functions. The first function
𝐿𝐶𝑁 is the cross entropy between the softmax output of the ‘‘student
network’’ and the real label of the input data. 𝐿𝐾𝐿 is the KL divergence
between the softmax output of the ‘‘student network’’ and the soft
target of the ‘‘teacher network’’ with the temperature parameter 𝑇 . 𝛼 is
sed to adjust the proportion of the two items before and after the final
ptimization objective. By adjusting the parameter 𝛼, we can control
he impact of the two items on the optimization target.

𝐿𝑘𝑑 (𝑇 𝑒𝑎, 𝑆𝑡𝑢, 𝑉) = (1 − 𝛼) × 𝐿𝐶𝑁 (𝑆𝑡𝑢, 𝑉)

+ 2𝑇 2𝛼 × 𝐿𝐾𝐿(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑇 𝑒𝑎
𝑇

), 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑆𝑡𝑢
𝑇

))
(3)

The aim of adding soft target with random factors in the logits layer
is to make the ‘‘student network’’ no longer directly learn the soft target
output from the logits layer in ‘‘teacher network’’. In turn, a proportion
of noise with a certain distribution should be added to the logits layer
output in ‘‘teacher network’’. This is the reason why this approach is
effective like data enhancement [30] and ensemble learning [31].

The specific method of adding random factors to softening targets is
shown in Eq. (4). The ‘‘teacher network’’ is 𝑡, the ‘‘student network’’ is 𝑠.
𝐷𝑝() is the dropout function. Firstly, some neuron outputs are randomly
selected with a given proportion in the ‘‘teacher network’’, and random
factor are generated by using Dropout [32]. Then we construct a
random numeric matrix that satisfies a certain distribution. Here we
use a Gaussian distribution 𝐺(𝜇, 𝜎) with a mean of 𝜇 and a variance
of 𝜎. This random numeric matrix has the same size as the output of
the ‘‘teacher network’’. Then, we take the selected neuron as ‘‘mask’’
and select the random numbers in the same position on the random
numeric matrix. These random numbers are added to the output of
the neurons. Thus, the soft target is added with random factors. Two
hyper parameters will be introduced here. One is the random number
proportion 𝜌 of the output, and the other is the variance of the Gaussian
distribution. With the increase of 𝜌, the logits layer output in the
‘‘teacher network’’ are added more random factors and the variation
range of output will be larger. With the increase of variance, the range
of random factors will be larger. After a series of experiments, it is
found that the soft target with random factors can significantly improve
the training result of student network.

𝐿𝑛𝑜𝑖𝑠𝑒(𝑡, 𝑠, 𝑉)

= 𝐿𝑘𝑑 (𝐷𝑝(𝐼, 𝜌) × 𝐺(𝜇, 𝜎) + 𝑡, 𝑠, 𝑉)

= (1 − 𝛼) × 𝐿𝐶𝑁 (𝑠, 𝑉) + 2𝑇 2𝛼×

𝐿𝐾𝐿(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐷𝑝(𝐼, 𝜌) × 𝐺(𝜇, 𝜎) + 𝑡

𝑇
), 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑠

𝑇
))

(4)

5. Pruning

In the multi-level knowledge transfer method proposed in this pa-
per, the fully connected layers have been replaced by the global av-
erage pooling layer in ‘‘student network’’. Therefore, the redundancy
in the ‘‘student network’’ exists in the convolution layer and needs
to be pruned. Deep neural network pruning usually involves three
steps: evaluating convolution kernels, cutting convolution kernels and
fine-tuning.

5.1. Convolution kernel evaluation

Evaluating the convolution kernel is the first step in the pruning
method. By evaluating the importance of convolution kernel in the
neural network, it is possible to understand its importance to the entire
neural network. Unimportant neurons can be cut as redundant. The
neuron here refers to an output channel in a convolution layer or a
computational unit in a fully connected layer. The evaluation of the
importance of a convolution kernel is to score the convolution kernel
of each output channel of each convolution layer in a deep neural
network, and this score indicates the influence of the convolution
190
kernel on the expression ability of the neural network model. If the
score is less than a certain threshold, then it can be considered less
important for the neural network model and can be eliminated as
redundant.

Data-independent convolution kernel evaluation method is shown
in (5). 𝑁𝑖 is the number of output channels and 𝑁𝑙 is the number of
layers. The 𝑆𝑐𝑜𝑟𝑒𝑎𝑎𝑤𝑠 of all the channels is summed to obtain the total
𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙, and the 𝑆𝑐𝑜𝑟𝑒𝑎𝑎𝑤𝑠 of each channel is divided by the 𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙
to obtain the normalized 𝑆𝑐𝑜𝑟𝑒𝑁𝑜𝑟𝑚 of each channel.

𝑆𝑐𝑜𝑟𝑒𝑁𝑜𝑟𝑚(𝑙, 𝑖) =
𝑆𝑐𝑜𝑟𝑒𝑎𝑎𝑤𝑠(𝑙, 𝑖)

1
𝑁𝑙

∑𝑁𝑙
𝑖=0 𝑆𝑐𝑜𝑟𝑒𝑎𝑎𝑤𝑠(𝑙, 𝑖)

=
1

𝑛𝑐×𝑛𝑚×𝑛𝑛

∑

|

|

|

𝐶 𝑙
𝑖
|

|

|

1
𝑁𝑖

∑𝑁𝑙
𝑖=0

1
𝑛𝑐×𝑛𝑚×𝑛𝑛

∑

|

|

|

𝐶 𝑙
𝑖
|

|

|

(5)

𝑆𝑐𝑜𝑟𝑒𝑎𝑎𝑤𝑠(𝑙, 𝑖) =
1

𝑛𝑐 × 𝑛𝑚 × 𝑛𝑛

∑

|

|

|

𝐶 𝑙
𝑖
|

|

|

(6)

In Eq. (6), 𝑛𝑐 × 𝑛𝑚 × 𝑛𝑛 is the total number of all parameters in an
output channel. 𝐶 𝑙

𝑖 is the convolution kernel of the 𝑖th output channel in
layer 𝑙. We get the intermediate result 𝑚 by adding the absolute values
of the weight parameters of one convolution kernel, then the 𝑆𝑐𝑜𝑟𝑒𝑎𝑎𝑤𝑠
of the channel is obtained by averaging 𝑚. This calculation method
uses the statistics of the parameters within the convolution kernel and
has nothing to do with the specific data, so it is a data-independent
convolution kernel evaluation method. This kind of data-independent
evaluation method does not need to obtain the response of each channel
of the convolution layer at each time of pruning, so the calculation
speed will be faster, which is consistent with the application scenario of
this paper. Since the pruning is performed on a global scale, the scores
calculated for each channel of each layer need to be normalized so as
to avoid deviations caused by the differences between layers, which
will result in the occurrence of low-score convolution kernels appear
in certain layers.

5.2. Global iterative pruning

Deep neural network pruning involves three steps: evaluating con-
volution kernels, cutting convolution kernel and fine-tuning. For the
specified pruning ratio, these three steps are performed in sequence.
The neurons are first evaluated. The convolution kernels of each out-
put channel of all convolution layers are uniformly scored using an
improved data-independent convolution kernel evaluation method and
ranked according to the score. Since the normalization operation is
performed during the evaluation of the convolution kernel, the im-
portance of each convolution kernel in each convolution layer can be
compared globally. Next, the unimportant neurons are pruned. Firstly,
the convolution kernels are sorted according to the scores calculated
in the first step. Secondly, the score threshold is calculated according
to the pruning ratio, and the value of weight parameter as well as
bias parameter of the convolution kernel whose score are below this
threshold are set to zero. Next, a deep neural network is reconstructed,
the structure and weight parameter values of the non-zero convolution
kernel in the original neural network model are copied. The new neural
network thus obtained is the pruned result. Finally, the neural network
is fine-tuned because the neural network obtained after pruning has
changed, and the network pruning causes the parameters of neural
network to deviate from the local optimum obtained by the gradient
descent method during training. The neural network classification abil-
ity may suffer some loss. Therefore, the neural network after pruning
needs to be fine-tuned, and a certain batch of training data is used to
retrain the pruned neural network so that the neural network model
classification capability can be improved. The entire pruning process is
shown in Fig. 5.

In order to improve the effect of network pruning, the paper uses the
global iterative pruning method. The pruning of non-essential convolu-
tion kernels is performed in accordance with uniform standards in all

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194

o
e
e
t
a
m
v
n
n
l
n
f
r
‘
‘
t
o

6

6

g
s
f
T
b
i
a

6

t

Fig. 5. Global iterative pruning.

utput channels of all convolution layers instead of layer by layer. This
liminates the need for fine-tuning every layer and speeds up pruning
ffectiveness. In addition, in order to ensure that the loss of classifica-
ion ability caused by neural network pruning can be recovered only
fter fine-tuning several times after each pruning, an iterative pruning
ethod is used in this paper. Only a small part of non-essential con-

olution kernels are pruned at each iteration, which make the neural
etwork structure change little and ensures that the parameters of the
eural network model as much as possible to maintain the original
ocal optimum. In the global iterative network pruning method, it is not
ecessary to specify the number of convolution kernels to be pruned
or each convolutional layer, but only to specify the same pruning
atio for the entire network at one iteration. Under the given original
‘student network’’ classification capability, this method can execute the
‘evaluating convolution kernels, cutting convolution kernels and fine
uning’’ step through multiple iterations to continuously approach the
ptimal parameters of ‘‘student network’’.

. Experimental evaluation

.1. Experiment environment

In this section, we evaluate the performance of the proposed al-
orithm. Our experiments are performed on three different platforms,
uch as, a GPU server, a Raspberry Pi 3 [33] and a Cambricon-1A plat-
orm [34,35]. The experimental platforms’ configurations are shown in
able 3. Most of the code in this article was developed using Python
ased on MXNet [36]. The experimental dataset used in this paper
s a small-category dataset of cifar-10 [37], and the dataset has been
ugmented [30].

.2. Lightweight and multi-level knowledge transfer experiments

The traditional CNN may be roughly divided into two kinds of struc-

ures. One is the stack network structure, such as VGG, Alexnet, and the

191
Fig. 6. VGG Experiment Network Structure.

other is the residual network structure, such as ResNet, DenseNet [38].
In this paper, we mainly use the VGG model, but the compression
method in this paper can also be applied to the network structure
of the residual structure. Firstly, the experimental verification in this
section uses a lightweight approach to design ‘‘student network’’ based
on the ‘‘teacher network’’. Next, we use the cifar-10 dataset to train the
‘‘teacher network’’ and ‘‘student network’’. Under the same experimen-
tal condition, a comparative training experiment between the method
proposed in this paper with the knowledge distillation (KD method)
is conducted. The evaluation indicators in the experiment include the
classification accuracy of the neural network, the compression ratio of
the neural network and the implementation of an inference time of the
neural network.

6.2.1. Neural network structure design
As shown in Fig. 6, the VGG based ‘‘teacher network’’ and ‘‘student

network’’ structure designed by the lightweight method are detailed.
In ‘‘student network’’, the global average pooling layer is used to

replace the unnecessary fully connected layer, and a large number of
convolutional layers are reduced to decrease the depth of the neural
network. Here, the ‘‘teacher network’’ uses a VGG network with a depth
of 23 layers, including 20 convolution layers and 3 fully connected
layers. The depth of the ‘‘student network’’ is of 8 layers, including 6
layers of convolution layers and 2 layers of fully connected layers. The
output of last fully connected layer is related to the specific dataset
being used. If a cifar-10 dataset is used, the output channel of the last
fully connected layer is 10 since the dataset has 10 types of targets.

6.2.2. Cifar-10 dataset experiment
The 60 000 32 × 32 color images of the cifar-10 dataset are di-

vided into 10 categories, so the output dimension of the last fully
connected layer of ‘‘teacher network’’ and ‘‘student network’’ are both
10. There are 50 000 training images and 10 000 test images. In the
VGG experiment, the ‘‘teacher network’’ has 23 layers and the ‘‘student
network’’ has 8 layers. We use the following parameters in Table 4 to
train the ‘‘teacher network’’ and ‘‘student network’’ directly from the
dataset. Then we use a multi-level knowledge transfer method to train
the ‘‘student network’’. The parameter settings are shown in Table 5.
Lastly, we use the knowledge distillation method to train the ‘‘student
network’’. The parameter settings are shown in the Table 6.

The results are shown in Fig. 7. From the experimental results of the
above experiments, we can see that the multi-level knowledge transfer
method proposed in this paper can improve the classification accuracy
of the ‘‘student network’’. Comparing multi-level knowledge transfer
with knowledge distillation, it is found that the ‘‘student network’’
trained by the multi-level knowledge transfer method has a higher
classification accuracy, which indicates that this method adds more
supervised information to the ‘‘student network’’ during the training

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194

p
t
b
s
d

t
m
p
D
p
‘
s
i

Table 3
Platform configuration.

Platform Processor Memory Graphic card Video memory OS

GPU server I7 5930 8 GB*4 TitanX pascal 12 GB Linux 16.04
Raspberry Pi 3 BCM2837 1 GB ⟋ ⟋ Raspbian 2018
Cambricon-1A Cambricon-1A 2 GB ⟋ ⟋ ⟋
Table 4
Parameter setting for teacher and student network training from scratch.

Neural network Parameter

Batch size Learning rate Initialization method Weight decay Momentum

(0∼80) (80∼180) (180∼300)

Teacher network 32 0.1 0.01 0.001 MSRA 0.0001 0.9
Student network 64 0.01 0.001 0.0001 MSRA 0.0001 0.9
Table 5
Parameter setting for multi-level knowledge transfer.

Temperature
parameter

Balance
parameter

Learning rate
multiplication

Middle layer learning Logits layer learning

(0∼40) (40∼100) (100∼200) Decay
method

Decay factor Initial
learning rate

Iteration

4 0.7 0.01 0.1 0.01 0.001 Exponential
decay

0.97 0.05 300
Table 6
Parameter setting for knowledge distillation.

Temperature
parameter

Balance
parameter

Learning rate
multiplication

Decay
method

Decay factor Initial
learning rate

Iteration

4 0.7 0.01 Exponential
decay

0.97 0.1 300
Fig. 7. Comparison of our method and knowledge distillation on cifar-10.

rocess. From the experimental data point of view, this method reduces
he loss rate of the classification accuracy of the ‘‘student network’’
y more than 15% from the original ‘‘student network’’ training from
cratch, and this method is over 30% more efficient than the knowledge
istillation method in reducing the loss rate.

According to the calculation of the neural network structure, the
otal number of parameters of the ‘‘teacher network’’ is 39.24M and
ost of the parameters exist in the fully connected layer. The total
arameter amount of the ‘‘student network’’ after lightweight is 1.15M.
ue to the use of a global average pooling layer, the amount of
arameters can be greatly reduced. The number of parameters of the

‘student network’’ is approximately 2.9% of the ‘‘teacher network’’. As
hown in Fig. 8, on the GPU platform, the execution time of a single
nference of the ‘‘teacher network’’ is 15.625 ms, which cannot be run
192
Fig. 8. The execution time comparison on the GPU server, Raspberry Pi 3 and
Cambricon-1A.

on the ARM platform due to memory overflow. It is 300.18 ms on the
Cambricon-1A platform. On the GPU platform, the execution time of a
single inference of the ‘‘student network’’ is 4.37 ms, 540.65 ms on the
ARM platform, and 74.11 ms on the Cambricon-1A platform. The time
efficiency of the ‘‘student network’’ has been greatly improved due to
the reduction of convolution layers. After multi-level knowledge trans-
fer and lightweight processing, the classification accuracy of ‘‘student
network’’ on the cifar-10 dataset was 75.96%, and the network model
parameter amount was 1.15M.

6.2.3. Pruning experiment
Through the multi-level knowledge transfer, we can get a ‘‘student

network’’, which is set as the input model of pruning experiments. In

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194
Table 7
Parameter setting in the pruning experiments for student network.

Batch size Initial learning
rate

Single iteration
training times

Single iteration
pruning ratio

Iteration
times

128 0.001 10 0.02 15
Table 8
Network parameters after global iterative pruning.

Parameter shape
before pruning

Parameter amount
before pruning

Parameter shape
after pruning

Parameter amount
after pruning

Pruning ratio

Block1 3*3*3*64 1728 3*3*3*27 729 58.8%
64*3*3*64 36 864 27*3*3*38 9234 74.9%

Block2 64*3*3*128 73 728 38*3*3*81 27 702 62.4%
128*3*3*128 147 456 81*3*3*103 75 987 40.1%

Block3 128*3*3*256 294 912 103*3*3*215 199 305 32.4%
256*3*3*256 589 824 215*3*3*256 495 360 17.1%

fc 256*10 2560 256*10 2560 0
the experiment, the pruning ratio is set as 0.3, that is, 30% of the total
parameters will be cut off. In the iterative pruning process, we set the
pruning step as 0.02 and the momentum as 0.9. In this paper, we use
batch gradient descent method to adjust the learning rate manually,
and the specific parameters are shown in Table 7.

After 15 times pruning with pruning ratios of 2% and fine tuning,
we get the compressed network, the classification accuracy of which is
74.04% and the total amount of network parameters is 0.81M detailed
in Table 8. From the table, we can see that network pruning can ef-
fectively eliminate redundant parameters existing in convolution layer,
and the effect of pruning is better in the lower layer network of neural
network.

In terms of execution time of compress network on the GPU server,
Raspberry Pi 3 and Cambricon-1A shown in Fig. 8, the execution time of
a single feedforward operation on GPU server is 3.71 ms, the Raspberry
Pi 3 is 461.71 ms and the Cambricon-1A is 62.96 ms. By the analysis
of the experimental results, it is found that the ‘‘student network’’
model can still be pruned by the channel pruning method. On the basis
of reducing the neural network parameters by 30%, the classification
accuracy of the compressed network model is reduced by 1.92%, and
the time complexity is improved by at least 15% than the ‘‘student
network’’. Through the experiments above, we can draw a conclusion
that the knowledge transfer integrating with the pruning method can
reduce more parameters and the time complexity of the neural net-
work. In summary, by the experiment based on Cifar-10 dataset and
the pruning experiment benchmarked on GPU server, Raspberry Pi 3
and Cambricon-1A, it is found that the parameters in the compressed
network have achieved more than 49.5 times compression and the time
efficiency of a single feedforward operation has been improved more
than 3.2 times than the ‘‘teacher network’’.

7. Conclusions and future works

Toward to intelligent applications of the edge device, we propose
the deep neural network compression algorithm based on knowledge
transfer with three stages: lightweight, multi-level knowledge transfer
and pruning that reduce the network depth, parameter and operation
complexity of the deep learning model. Refer to the future work, we
will implement the algorithm on Cambricon MLU220 and plan to con-
duct a series of tests to evaluate and fine-tune the design. In addition,
further research is carried out in the direction of the measurement of
network variety in the middle layer and the new network structure
design.

CRediT authorship contribution statement

Yanming Chen: Conceptualization, Methodology, Writing - re-
viewing & editing. Chao Li: Resources, Visualization, Conceptualiza-
tion, Methodology, Reviewing & editing. Luqi Gong: Formal analy-
sis, Software. Xiang Wen: Formal analysis, Writing. Yiwen Zhang:
193
Conceptualization, Methodology, Formal analysis, Validation, Review-
ing. Weisong Shi: Conceptualization, Methodology, Formal analysis,
Validation, Reviewing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work is supported in part by the National Natural Science
Foundation of China under Grant (No. 61702487, No. 61802001).

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646, http://dx.doi.org/10.1109/jiot.
2016.2579198.

[2] W. Shi, S. Dustdar, The promise of edge computing, Computer 49 (5) (2016)
78–81, http://dx.doi.org/10.1109/mc.2016.145.

[3] X. Xu, B. Shen, X. Yin, M.R. Khosravi, H. Wu, L. Qi, S. Wan, Edge server
quantification and placement for offloading social media services in industrial
cognitive IoV, IEEE Trans. Ind. Inf. (2020) 1, http://dx.doi.org/10.1109/tii.2020.
2987994.

[4] L. Qi, X. Wang, X. Xu, W. Dou, S. Li, Privacy-aware cross-platform service
recommendation based on enhanced locality-sensitive hashing, IEEE Trans. Netw.
Sci. Eng. (2020) 1, http://dx.doi.org/10.1109/tnse.2020.2969489.

[5] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436,
http://dx.doi.org/10.1038/nature14539.

[6] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, Deep
learning for generic object detection: A survey, Int. J. Comput. Vis. 128 (2)
(2020) 261–318, http://dx.doi.org/10.1007/s11263-019-01247-4.

[7] Y. Belinkov, J. Glass, Analysis methods in neural language processing: A survey,
Trans. Assoc. Comput. Linguist. 7 (2019) 49–72, http://dx.doi.org/10.1162/tacl_
a_00254.

[8] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105, http://dx.doi.org/10.1145/3065386.

[9] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1–9, http://dx.doi.org/10.1109/cvpr.2015.7298594.

[11] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778, http://dx.doi.org/10.1109/cvpr.2016.90.

[12] Y. Zhang, C. Yin, Q. Wu, Q. He, H. Zhu, Location-aware deep collaborative
filtering for service recommendation, IEEE Trans. Syst. Man Cybern.: Syst. (2019)
1–12, http://dx.doi.org/10.1109/tsmc.2019.2931723.

[13] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2015, arXiv
preprint arXiv:1510.00149.

http://dx.doi.org/10.1109/jiot.2016.2579198
http://dx.doi.org/10.1109/jiot.2016.2579198
http://dx.doi.org/10.1109/jiot.2016.2579198
http://dx.doi.org/10.1109/mc.2016.145
http://dx.doi.org/10.1109/tii.2020.2987994
http://dx.doi.org/10.1109/tii.2020.2987994
http://dx.doi.org/10.1109/tii.2020.2987994
http://dx.doi.org/10.1109/tnse.2020.2969489
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1162/tacl_a_00254
http://dx.doi.org/10.1162/tacl_a_00254
http://dx.doi.org/10.1162/tacl_a_00254
http://dx.doi.org/10.1145/3065386
http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/cvpr.2015.7298594
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/tsmc.2019.2931723
http://arxiv.org/abs/1510.00149

Y. Chen, C. Li, L. Gong et al. Computer Communications 163 (2020) 186–194
[14] L. Qi, Q. He, F. Chen, X. Zhang, W. Dou, Q. Ni, Data-driven web APIs
recommendation for building web applications, IEEE Trans. Big Data (2020) 1,
http://dx.doi.org/10.1109/tbdata.2020.2975587.

[15] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, Y. Yang, Covering-based
web service quality prediction via neighborhood-aware matrix factorization, IEEE
Trans. Serv. Comput. (2019) 1, http://dx.doi.org/10.1109/tsc.2019.2891517.

[16] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al., Predicting parameters in
deep learning, in: Advances in Neural Information Processing Systems, 2013,
pp. 2148–2156.

[17] B.B. Sau, V.N. Balasubramanian, Deep model compression: Distilling knowledge
from noisy teachers, 2016, arXiv preprint arXiv:1610.09650.

[18] W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural
networks with the hashing trick, in: International Conference on Machine
Learning, 2015, pp. 2285–2294.

[19] Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks
using vector quantization, 2014, arXiv preprint arXiv:1412.6115.

[20] M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep neural
networks with binary weights during propagations, in: Advances in Neural
Information Processing Systems, 2015, pp. 3123–3131.

[21] R. Setiono, H. Liu, Neural-network feature selector, IEEE Trans. Neural Netw. 8
(3) (1997) 654–662, http://dx.doi.org/10.1109/72.572104.

[22] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for
efficient neural network, in: Advances in Neural Information Processing Systems,
2015, pp. 1135–1143.

[23] E.L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, Exploiting linear
structure within convolutional networks for efficient evaluation, in: Advances
in Neural Information Processing Systems, 2014, pp. 1269–1277.

[24] C. Bucilua, R. Caruana, A. Niculescu-Mizil, Model compression, in: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 2006, pp. 535–541, http://dx.doi.org/10.1145/1150402.
1150464.

[25] J. Ba, R. Caruana, Do deep nets really need to be deep? in: Advances in Neural
Information Processing Systems, 2014, pp. 2654–2662.

[26] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,
2015, arXiv preprint arXiv:1503.02531.

[27] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1251–1258, http://dx.doi.org/10.1109/cvpr.2017.195.
194
[28] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (Jul) (2011) 2121–2159.

[29] A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets: Hints
for thin deep nets, 2014, arXiv preprint arXiv:1412.6550.

[30] A. Fawzi, H. Samulowitz, D. Turaga, P. Frossard, Adaptive data augmentation for
image classification, in: 2016 IEEE International Conference on Image Processing,
ICIP, IEEE, 2016, pp. 3688–3692, http://dx.doi.org/10.1109/icip.2016.7533048.

[31] T.G. Dietterich, Ensemble methods in machine learning, in: International Work-
shop on Multiple Classifier Systems, Springer, 2000, pp. 1–15, http://dx.doi.org/
10.1007/3-540-45014-9_1.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (1) (2014) 1929–1958.

[33] U. Learning, Raspberry pi 3: get started with raspberry pi 3 a simple guide
to understanding and programming raspberry pi 3 (raspberry pi 3 user guide,
python programming, mathematica programming), CreateSpace Independent
Publishing Platform, North Charleston, SC, USA, 2016.

[34] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N.
Sun, et al., Dadiannao: A machine-learning supercomputer, in: Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2014, pp. 609–622, http://dx.doi.org/10.1109/micro.2014.58.

[35] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, T. Chen, Cambricon: An
instruction set architecture for neural networks, in: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture, ISCA, 2016, pp. 393–405,
http://dx.doi.org/10.1109/isca.2016.42.

[36] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z.
Zhang, Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems, 2015, arXiv preprint arXiv:1512.01274.

[37] A. Krizhevsky, G. Hinton, et al., Learning Multiple Layers of Features from Tiny
Images, Technical Report, Citeseer, 2009.

[38] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4700–4708, http://dx.doi.org/10.
1109/cvpr.2017.243.

http://dx.doi.org/10.1109/tbdata.2020.2975587
http://dx.doi.org/10.1109/tsc.2019.2891517
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb16
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb16
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb16
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb16
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb16
http://arxiv.org/abs/1610.09650
http://arxiv.org/abs/1412.6115
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb20
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb20
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb20
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb20
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb20
http://dx.doi.org/10.1109/72.572104
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb22
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb22
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb22
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb22
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb22
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb23
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb23
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb23
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb23
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb23
http://dx.doi.org/10.1145/1150402.1150464
http://dx.doi.org/10.1145/1150402.1150464
http://dx.doi.org/10.1145/1150402.1150464
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb25
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb25
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb25
http://arxiv.org/abs/1503.02531
http://dx.doi.org/10.1109/cvpr.2017.195
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb28
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb28
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb28
http://arxiv.org/abs/1412.6550
http://dx.doi.org/10.1109/icip.2016.7533048
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb32
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb32
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb32
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb32
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb32
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb33
http://dx.doi.org/10.1109/micro.2014.58
http://dx.doi.org/10.1109/isca.2016.42
http://arxiv.org/abs/1512.01274
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb37
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb37
http://refhub.elsevier.com/S0140-3664(20)31936-8/sb37
http://dx.doi.org/10.1109/cvpr.2017.243
http://dx.doi.org/10.1109/cvpr.2017.243
http://dx.doi.org/10.1109/cvpr.2017.243

	A deep neural network compression algorithm based on knowledge transfer for edge devices
	Introduction
	Related work
	Lightweight
	Lightweight fully connected layer
	Lightweight convolution layer

	Multi-level knowledge transfer
	Middle layer learning
	Logits layer learning

	Pruning
	Convolution kernel evaluation
	Global iterative pruning

	Experimental evaluation
	Experiment environment
	Lightweight and multi-level knowledge transfer experiments
	Neural network structure design
	Cifar-10 dataset experiment
	Pruning experiment

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

