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Gradient compression is an effective technique for improving the efficiency of distributed training. However, 
introducing gradient compression can reduce model accuracy and training efficiency. Furthermore, we also 
find that using a layer-wise gradient compression algorithm would lead to significant compression and 
communication overhead, which can negatively impact the scaling efficiency of the distributed training system. 
To address these issues, we propose a new method called 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which leverages the Count-Sketch 
data structure to enhance the scalability and training speed of distributed deep learning systems. Moreover, 
our method employs LayerFusion to optimize gradient compression algorithms’ scalability and convergence 
efficiency by formulating an optimal multi-layer fusion strategy without introducing extra hyperparameters. 
We evaluate our method on a cluster of 16 GPUs and demonstrate that it can improve training efficiency by 
up to 18.6% without compromising the model’s accuracy. In addition, we find that applying our LayerFusion 
algorithm to other gradient compression methods improved their scalability by up to 2.87×.
1. Introduction

Deep learning has gained widespread popularity in various fields 
such as Computer Vision, Natural Language Processing, and Speech 
Recognition [24,13,31]. Most deep learning networks have achieved 
state-of-the-art performance across different domains [43,53,36,22,57]. 
Stochastic gradient descent (SGD) and its various variants [12] remain 
the primary methods for training deep learning networks. However, 
deep learning models require large-scale datasets such as ImageNet 
[37] for training. With the rapid increase in the number of parameters 
in deep neural networks (DNNs), training times have become longer, 
sometimes taking days to weeks [15].

To enhance the training efficiency of deep learning models, high-

performance processors such as NVIDIA A100 [9], Google TPU [21], 
and Huawei Ascend910 [51] are employed to reduce training times. 
Furthermore, synchronous data parallel stochastic gradient descent is 
a widely adopted approach for distributed learning [27]. During the 
communication phase of data parallel training, a significant number of 
gradients need to be transmitted between servers. The network commu-

nication overhead for parameter information poses a severe bottleneck 
to the performance of distributed training [26].

* Corresponding author.

In recent years, there has been an increased focus on addressing 
communication bottlenecks in distributed training, leading to a lot of 
research. A significant body of work has proposed gradient compression 
algorithms [16,18,49,54] to reduce the amount of data transferred si-
multaneously, thereby reducing communication overhead and improv-

ing scalability. Two primary types of gradient compression methods 
have emerged: 1) sparsification, which selects a subset of gradients for 
aggregation [45,30,47]; and 2) quantization, which quantizes gradients 
(e.g., FP32) to fewer bits (e.g., INT8) [3,10]. Theoretically, gradient 
compression can significantly reduce communication overhead thanks 
to smaller communication data sizes [4,28].

Gradient compression reduces communication overhead in dis-

tributed training, but it can harm model accuracy and scalability 
[19,38,52,14]. To overcome this challenge, we propose a new method, 
𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which compresses gradients using the Count-

Sketch data structure on local servers. We found that using a layer-wise 
gradient compression algorithm would lead to significant compression 
and communication overhead. Therefore, we also propose a multi-layer 
fusion algorithm, called LayerFusion, to optimize the scalability and 
convergence efficiency of gradient compression algorithms and acceler-

ate the distributed training of DNNs.
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Our contributions are summarized as follows:

∙ We introduce 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which can effectively im-

prove the training speed of various DNNs and datasets under low-

bandwidth networks.

∙ We propose LayerFusion as a heuristic algorithm to improve the 
scalability of gradient compression algorithms and guarantee their 
convergence rate.

∙ We demonstrate the effectiveness of our approach by applying 
LayerFusion to various gradient compression algorithms.

The rest of the paper is organized as follows. Section 2 provides 
background information on deep learning, stochastic gradient descent, 
and distributed learning. In section 3, we discuss the limitations of 
current gradient compression algorithms and the motivation for our 
proposed approach. Section 4 introduces our proposed 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛
SGD method with LayerFusion and provides a theoretical analysis of 
its convergence rate. Section 5 presents experimental results and dis-

cussions, including comparisons with other compression methods and 
analyses of the trade-offs between compression ratio, communication 
overhead, and model accuracy. Finally, we conclude the paper in Sec-

tion 6 and suggest directions for future research.

2. Background

We first introduce the communication overhead in distributed train-

ing and then describe the methods to reduce it in the current DL frame-

work.

2.1. Communication in distributed deep learning

The data-parallel paradigm of distributed deep learning (DDL) in-

volves each accelerator (e.g., GPU, TPU) having a replica of the model, 
and the training dataset is divided into subsets based on the number of 
GPUs. Each iteration involves the accelerator reading a batch of train-

ing data from its own training data subset, calculating the gradient 
tensor by forward and backward propagation, and using it to update 
the DNN model. An important step is aggregating the gradient tensors 
computed by all GPUs synchronously or asynchronously. Synchronous 
data-parallel DDL, where all GPUs communicate the gradient tensors 
and wait for the aggregated results before the next iteration, is the 
de facto standard used by DDL frameworks [27,20,39]. Asynchronous 
data-parallel DDL, where GPUs do not wait for aggregation to complete, 
may harm model accuracy [8].

In distributed training clusters with multiple machines, there is both 
intra-machine communication and inter-machine communication. Hi-

erarchical communication is often used in DDL frameworks [27,20,39], 
where gradient synchronization is carried out in three steps: 1) gradi-

ents are aggregated among GPUs within one machine; 2) they are then 
aggregated across machines; 3) the aggregated gradients are commu-

nicated within one machine again to ensure all GPUs have the same 
synchronized results. Some frameworks [27,39] also support flat com-

munication, where all GPUs join the same collective operation and have 
only one communication step.

2.2. Gradient compression

Gradient compression (GC) algorithms have been proposed to re-

duce communication overhead in DDL. These algorithms can be broadly 
categorized into two types: sparsification and quantization. Sparsifica-

tion involves selecting a subset of gradients for synchronization [30,2], 
which minimizes gradient exchange while ensuring model accuracy. 
Quantization, on the other hand, reduces communication overhead by 
reducing the precision of gradients. This is achieved by mapping FP32 
gradients to lower bit precision, such as 8 bits [10], 2 bits [19], or even 
2

1 bit [7]. These compression algorithms have been shown to preserve 
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model convergence and impose negligible impact on model accuracy 
when combined with error-feedback mechanisms, as validated through 
theoretical proofs and empirical studies [50,44].

2.3. Computation and communication overlap

A deep neural network comprises multiple layers, and the back-

propagation process involves layer-by-layer computation, meaning that 
the gradient of the previous layer is already available when calculating 
the gradient of the current layer. To enhance the scalability and per-

formance of DNNs, many studies [55,40,27,45,35,39] have proposed 
overlapping computation and communication by transmitting partial 
gradient information as soon as it becomes available instead of wait-

ing for all gradient information to be ready. This approach, known as 
wait-free back-propagation (WFBP), is now widely adopted in popular 
machine learning frameworks, such as PyTorch [27], TensorFlow [1], 
and Horovod [39], to boost the training efficiency of distributed DNNs. 
The concept of overlapping computation and communication is also ex-

ploited in our LayerFusion algorithm.

3. Motivation

In this section, we aim to assess the scalability and compression ef-

ficiency of existing gradient compression algorithms through detailed 
experimental evaluations. To analyze the effect of gradient compres-

sion, we start by examining gradient calculation. We then conduct 
large-scale experiments to investigate the scalability of the GC algo-

rithms across a range of models. The experimental setup is consistent 
with that described in Section 5.

3.1. Performance verification

To evaluate the performance of gradient compression, we conducted 
experiments to evaluate several popular compression methods, includ-

ing sparsification and quantization methods. The performance of a com-

pression algorithm can be measured by its scaling factor [56] and the 
time required for compression and decompression. The scaling factor is 
defined as the ratio of the training time on 𝑛 accelerators to the train-

ing time on a single accelerator, denoted as 𝑇𝑛 and 𝑇1, respectively. 
Specifically, the scaling factor is computed as:

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑛

𝑛𝑇1
(1)

Fig. 1a shows the scaling factors of various compression algorithms 
with layer-wise compression for ResNet-20 on the CIFAR10 dataset, 
with the baseline referring to full-precision gradient training without 
using the compression algorithm. Despite the good expansion efficiency 
of these compression algorithms in theory, actual experimental results 
show that they do not scale well and perform even worse than the 
baseline. In particular, the Top-k and DGC [30] algorithms have a per-

formance more than 40% lower than the baseline.

In addition, we also measure the compression-decompression time 
of different gradient compression algorithms using ResNet-50 on V100 
GPUs. Table 1 shows that most compression algorithms take more 
than 100 ms to compress and decompress gradients for ResNet-50 on 
V100 GPUs. The slowest algorithm is DGC, which takes 242 ms, while 
SignSGD takes only 13 ms.

3.2. Rethinking gradient compression

To analyze the poor performance of gradient compression, we con-

ducted tests to measure the compressing overhead of different gradient 
compression algorithms across varying tensor sizes. The results were 
presented in Fig. 1b. From the graph, it is evident that the compression 
overhead of most algorithms cannot be ignored regardless of tensor size. 

During distributed training, deep neural network models have multiple 
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Fig. 1. (a) The scaling factors of ResNet-20 on CIFAR10 dataset with various gradient compression algorithms. (b) The compressing overhead of tensors of different 
sizes under different compression algorithms. (c) The total number of tensors for synchronization in different DNNs.

Fig. 2. Distributed training with different methods.
Table 1

The time for compression and decompression of gra-

dient compression methods for ResNet-50 on V100 
GPUs.

Type Method 𝑇𝑐𝑜𝑚𝑝_𝑑𝑒𝑐𝑜𝑚𝑝(𝑚𝑠)

Sparsification Top-K - 1% 122

DGC - 1% 242

Random-K - 1% 187

Quantization QSGD - 2 bit 46

SignSGD 13

TernGrad 70

Low Rank PowerSGD - Rank 4 174

tensors to synchronize, as illustrated in Fig. 1b. Given these observa-

tions, we believe that the compression of the gradient of the DNN model 
layer by layer can lead to significant compressing overhead, which is a 
significant reason for the poor performance of the compression algo-

rithm.

The gradient compression algorithm necessitates a trade-off between 
model accuracy and compression rate. When the compression rate of the 
algorithm is excessively high, it can improve the training speed, but the 
loss of model accuracy will be substantial. Conversely, if the compres-

sion rate is too low, the model’s accuracy is ensured, but the training 
speed is not improved. Therefore, selecting an imbalanced hyperparam-
3

eter, like the parameter k in Top-k, results in poor performance.
The use of layer-wise gradient compression algorithms can lead to 
significant compression and communication overhead, which can neg-

atively impact the efficiency of the distributed training process. The 
communication process incurs a fixed overhead during startup, as doc-

umented in [41], and there is also a fixed overhead for starting and 
executing the kernel in CUDA [5]. However, our experiments have 
shown that most gradient compression algorithms are not significantly 
affected by the size of the gradient tensor, with the compression over-

head not doubling even as the tensor size increases from 24 to 220. 
This observation has led us to develop a strategy for optimizing the 
layer-wise method by fusing multiple gradient tensors, which can sub-

stantially reduce the compression overhead and improve the efficiency 
of the distributed training process.

As shown in Fig. 2, we need to find a gradient fusion strategy to 
make the gradient compression algorithm optimal. However, overlap 
between the computation and communication needs to be considered 
when fusing multiple gradient tensors. For example, an extreme case 
would be to fuse the gradient of the entire model into a single ten-

sor. Although the compression algorithm will only be called once, the 
communication process cannot be started before the computation is 
completed, and there is no overlap between the calculation and com-

munication process, resulting in extremely low training efficiency.

To achieve optimal results, the design of a gradient fusion strategy 
should consider various factors, including the compression algorithms 
utilized, the characteristics of the deep neural network models, and 

the cluster configuration, such as the network bandwidth and the num-
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ber of workers. To enhance the actual performance of the compression 
algorithm, we propose the LayerFusion algorithm. Additionally, to en-

hance the training efficiency and scalability of DDL systems, we propose 
the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD. These methods aim to improve the over-

all training efficiency by reducing the compression and communication 
overhead while maintaining a high level of accuracy.

4. Method

In this section, we introduce our method, which aims to improve 
the scalability and model convergence efficiency of distributed train-

ing. Firstly, we propose the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which is designed 
to enhance the scalability and training speed of distributed training. 
We then present LayerFusion, which is employed in 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛
SGD to optimize the scalability and convergence efficiency of gradi-

ent compression algorithms. Finally, we demonstrate how LayerFusion 
can automatically determine an optimal gradient fusion strategy with-

out introducing additional hyperparameters. Additionally, we provide 
theoretical proof of the convergence rate of our proposed method.

4.1. Overview

In 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, each server transmits the sketch of the 
gradient tensor instead of the entire or compressed gradient tensor. To 
achieve this, each server compresses its gradient into a 𝐶𝑜𝑢𝑛𝑡 −𝑆𝑘𝑒𝑡𝑐ℎ
structure locally. During the aggregation phase, the servers add up their 
compressed gradient sketches. Then, in Line 7, the algorithm recovers 
the top-𝑘 largest gradient elements by magnitude from the summed 
sketch and uses the exact values of these top-𝑘 elements to update the 
weight. The algorithm used to recover the top-𝑘 elements from the 
summed sketch is called HEAVYMIX, which was introduced in [17]. 
This approach can improve the scalability and convergence efficiency 
of distributed training.

Algorithm 1 Sketch-Fusion SGD.

Input: dataset 𝐷; model 𝑿 = {𝑥1, ..., 𝑥𝑦}; learning rate 𝜂; the number of iterations to 
train: 𝑇 ; the sparsity rate: 𝑘; the number of workers: 𝑁 ;

1: for 𝑡 = 0 → 𝑇 do

2: Sampling a mini-batch of data 𝐷𝑡 from 𝐷;

3: for 𝑖 = 0 → 𝑦 do

4: Compute stochastic gradient 𝐺𝑖,𝑡 ;
5: Compute sketches 𝑆𝑔𝑡 of 𝐺𝑖,𝑡 ;
6: Aggregate sketches 𝑆𝑡 = 1

𝑁

∑𝑁

𝑝=1 𝑆
𝑝
𝑡 ;

7: Compute decompressed gradient 𝐺𝑖,𝑡 =𝐻𝐸𝐴𝑉 𝑌𝑀𝐼𝑋(𝑆𝑡, 𝑘); [17]

8: 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 − 𝜂𝐺𝑖,𝑡
9: end for

10: end for

Effectively reduces the computational overhead. Moreover, commu-

nication and computation are overlapped to further reduce the commu-

nication overhead.

In LayerFusion, the key idea is to reduce the number of calls to the 
gradient compression algorithm. This is achieved by fusing the gradient 
tensors, which reduces computational overhead. Moreover, communi-

cation and computation are overlapped to further reduce the communi-

cation overhead.

Specifically, LayerFusion divides a model 𝑋 into 𝑦 groups, i.e., 
𝑿 = 𝑥1, ..., 𝑥𝑦, and gradient tensors in the same group are fused and 
compressed together in a compression operation. 𝑇 is the total num-

ber of training iterations, and 𝑥𝑖,𝑡 represents 𝑥𝑖 in the 𝑡𝑡ℎ iteration. The 
gradient compression algorithm 𝐶(⋅) may include methods such as spar-

sification, quantization, or low-rank approximation, and 𝐶−1(⋅) is the 
corresponding decompression algorithm.

Moreover, LayerFusion supports a series of communication schemes 
for different compression algorithms, including all-reduce [39,34], all-

gather [46], and parameter server [25]. Communication is overlapped 
4

with backpropagation to minimize the communication overhead. After 
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communication, the fused and compressed gradients are decompressed 
and aggregated to update the model. The entire process is summarized 
in Algorithm 2.

Algorithm 2 LayerFusion for compression methods.

Input: dataset 𝐷; model 𝑿 = {𝑥1, ..., 𝑥𝑦}; learning rate 𝜂; compression function 𝐶(⋅); the 
number of iterations to train: 𝑇

1: for 𝑡 = 0 → 𝑇 do

2: Sampling a mini-batch of data 𝐷𝑡 from 𝐷;

3: for 𝑖 = 0 → 𝑦 do

4: Compute stochastic gradient 𝐺𝑖,𝑡 ;
5: Compute compressed gradient 𝛿𝑖,𝑡 = 𝐶(𝐺𝑖,𝑡);
6: Communicate compressed gradients Δ𝑖,𝑡 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝛿𝑖,𝑡);
7: Aggregate gradients from all workers 𝐺𝑖,𝑡 = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐶−1(Δ𝑖,𝑡));
8: 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 − 𝜂𝐺𝑖,𝑡
9: end for

10: end for

4.2. Theoretical guarantee

In this section, we provide an analysis of the convergence rate of 
the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD method with the sparsified gradient com-

pression algorithm using LayerFusion. We should note that the analysis 
presented below is specifically focused on synchronous data-parallel 
distributed SGD.

4.2.1. Preliminaries

We define 𝐹 (⋅) as the loss function we need to optimize, and the 
stochastic optimization problem we study can be expressed as:

min𝑓 (𝑥) = 1
𝑛

𝑛∑
𝑖=1

𝔼𝜉∼𝐷𝑖𝐹𝑖(𝑥; 𝜉) (2)

Here, 𝑛 is the number of workers in the cluster, 𝐷𝑖 is a subset of the 
training dataset on worker 𝑖, and 𝐹𝑖(𝑥; 𝜉) is the loss computed from 
data on worker 𝑖.

In this subsection, we use assumptions for the loss function and the 
variance of the stochastic gradient to analyze the convergence rate of 
the 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛 SGD method. The following symbols are used: |⋅|2
denotes the L2 norm of a tensor or the spectral norm of a matrix; ▽𝑓 (⋅)
denotes the gradient of a function 𝑓 ; 1𝑛 denotes the column tensor in 
ℝ𝑛 with 1 for all elements; and 𝑓∗ denotes the optimal solution for the 
stochastic optimization problem.

Assumption 1 (Lipschiz continuity). ▽𝑓 (⋅)′ is Lipschitz continuous with 
respect to the L2 norm, i.e.,

‖‖▽𝑓𝑖(𝑥) −▽𝑓𝑖(𝑦)‖‖2 ≤𝐿‖𝑥− 𝑦‖2 ∀𝑥,∀𝑦,∀𝑖. (3)

Assumption 2 (Bounded variance). The variance of stochastic gradient 
is bounded, i.e.,

𝔼𝜉∼𝐷𝑖
‖‖▽𝐹𝑖(𝑥; 𝜉) −▽𝑓𝑖(𝑥)‖‖22 ≤ 𝜎2 ∀𝑥,∀𝑖. (4)

Assumption 3 (Unbiasedness). The stochastic gradient of 𝐹𝑖(𝑥; 𝜉) is un-

biased, i.e.,

𝔼𝜉∼𝐷𝑖▽𝐹𝑖(𝑥; 𝜉) =▽𝑓𝑖(𝑥) ∀𝑥,∀𝑖. (5)

Assumption 4. Gradient sparsification algorithms can exchange all the 
gradients in any 𝑝 consecutive iterations.

These assumptions are commonly employed in previous works to 

analyze the convergence rate of distributed SGD [19,3,11,17,29].
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Table 2

Frequantly used notations.

Name Description

𝑁 the number of tensors of a DNN model

𝛽 the computation time of each iteration

𝑦 the number of groups into which the model is divided

𝑥𝑖 the size of the 𝑖𝑡ℎ group

𝑋𝑦 a multi-layer fusion strategy of the DNN model

𝐶𝑜𝑚𝑝(𝑥𝑖) the compression time of the 𝑖𝑡ℎ group

𝐶𝑜𝑚𝑚(𝑥𝑖) the communication time of the 𝑖𝑡ℎ group

𝑝(𝑥𝑖) the overlap time between the computation time

and communication time

4.2.2. Sparsified communication

Partial gradient transmission achieves the same convergence rate as 
vanilla distributed SGD. It has been shown in previous works on gra-

dient sparsification [44,17,20,6]. Since LayerFusion selects an essential 
partial gradient tensor for communication, it can maintain the same 
convergence rate as the applied gradient sparsification algorithms.

Theorem 1. In data-parallel distributed training, all workers share the same 
training dataset. When 𝛾 = 𝛼

√
𝐵∕𝑇 , where 𝛼 > 0 is a constant, 𝐵 is the to-

tal mini-batch size on all workers, 𝐿𝛾 ≤ 1, and 6𝑛𝑝2𝐿2𝛾2 < 1, LayerFusion 
for gradient sparsification algorithms has the convergence rate as shown in 
the following equation:

1
𝑇

(
𝑇−1∑
𝑡=0

|||||▽𝑓

(
𝑋𝑡1𝑛
𝑛

)|||||
2

2

)

≤
4𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + 2𝛼𝐿𝜎2√

𝐵𝑇
+ 2𝑝𝑛2𝛼2𝐿2𝜎2

𝑇
, (6)

when the number of iterations satisfies 𝑇 ≥ 12𝑛𝐵𝛼2𝑝2𝐿2. Previous work 
[19] has proven Theorem 1 under a different assumption of the training 
dataset. Here, 𝑋𝑡1𝑛

𝑛
is the average of the gradients on all workers. If the 

number of iterations 𝑇 is large enough, the right side of Equation (6) is 
dominated by its first term. And the LayerFusion algorithm for gradient spar-

sification achieves the same 𝑂( 1√
𝐵𝑇

) convergence rate as vanilla distributed 
SGD [44]. Please refer to the appendix for the proof of quantized communi-

cation.

4.3. Method for searching the optimal fusion strategy

To determine the optimal computation-communication overlap 
strategy, previous work has abstracted the problem as an optimiza-

tion problem [41]. Similarly, we have abstracted the fusion problem as 
an optimization problem and propose our algorithm, LayerFusion, for 
searching the optimal gradient fusion strategy. Table 2 lists the common 
notations we use.

The goal of LayerFusion is to minimize the iteration time of com-

pression algorithms. Using the WFBP method to overlap computation 
and communication can reduce the overall iteration time. Therefore, 
the target formula for this problem is:

min
𝑦∈[1,𝑁]

min
𝑋𝑦∈𝑦

𝐹 (𝑋𝑦) =
𝑦∑
𝑖=1
𝐶𝑜𝑚𝑝(𝑥𝑖) +

𝑦∑
𝑖=1
𝐶𝑜𝑚𝑚(𝑥𝑖) + 𝛽 −

𝑦∑
𝑖=1
𝑝(𝑥𝑖) (7)

Here, 𝑦 is the set of all possible fusion strategies with 𝑦 groups. Layer-

Fusion heuristically searches for an optimal multi-layer fusion strategy, 
but we have found that the gain of LayerFusion decreases as the number 
of groups of gradient fusion increases for most models and compres-

sion algorithms. To address this, we introduce prior knowledge into 
the heuristic search algorithm. If the performance of strategy 𝐹 (𝑋𝑦) is 
worse than 𝐹 (𝑋𝑦−1) or the difference is less than 𝜖𝐹𝑚𝑖𝑛(𝑋𝑦−1) (where 𝜖
is a constant parameter), the algorithm terminates, and 𝑋𝑦 is returned. 
Moreover, LayerFusion adopts binary search when searching 𝑋𝑦, so the 
5

time complexity is 𝑂(𝑁 log𝑁).
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Table 3

The experimental setup of training deep models.

Model Dataset Epochs 𝑏 𝜂

ResNet-20 CIFAR10 140 128 0.1

VGG-16 CIFAR10 140 128 0.1

ResNet-50 ImageNet 140 128 0.01

LSTM PTB 65 32 0.01

5. Experiment

To thoroughly evaluate the effectiveness and generalizability of our 
proposed method, we conducted experiments using various represen-

tative DNNs from different AI domains and with different datasets. 
Specifically, we chose the CIFAR10 dataset [23] consisting of 50,000 
training samples, the ImageNet dataset [37] containing about 1.2 mil-

lion images for classification, and the Penn TreeBank (PTB) dataset [32]

in the natural language processing field, containing 923,000 language 
samples. For each dataset, we selected a neural network model with 
high accuracy and computational efficiency. For CIFAR10, we used the 
ResNet-20 [15] and VGG-16 [43] models, and for ImageNet, we em-

ployed the ResNet-50 [15] model. The PTB dataset was tested on an 
LSTM language model with two hidden layers [42]. We chose these 
DNNs because they were used in the original papers of the compared 
methods for comparative experiments [33,30,48,3]. The training details 
and hyperparameters for the models are listed in Table 3, where 𝑏 de-

notes the batch size, and 𝜂 refers to the learning rate. All models were 
trained with 32-bit floating-point precision.

We conducted all experiments on a cluster of 16 NVIDIA Tesla 
V100 GPUs with 32 GB memory and two 24-core/48-thread Intel Xeon 
Gold 6252 2.1 GHz processors. The servers in the cluster are running 
the Ubuntu 18.04 LTS system and are equipped with PyTorch-1.8.1, 
Horovod-0.22.1, CUDA-11.1, OpenMPI-4.1.3, and NCCL-2.8.3, all con-

nected by Ethernet with 20 Gbps bandwidth.

5.1. Training speed improvement

We conducted an experiment using LayerFusion on eight gradient 
compression algorithms and our proposed 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD on 
three different DNN models using different datasets. Figs. 3-5 show the 
performance of various gradient compression algorithms with LayerFu-

sion. The light-colored cylinder in the figure represents the improve-

ment of the gradient compression algorithm with LayerFusion. Among 
them, the Top-k algorithm improved by 1.58×-2.51× in the task scenario 
of ResNet-20 on CIFAR10. Additionally, almost all gradient compression 
algorithms using LayerFusion exceeded the baseline performance. The 
𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD achieved the optimal scaling factor in different 
task scenarios and different numbers of cluster GPUs. Unfortunately, 
there was no significant improvement in the PowerSGD algorithm. We 
believe the main issue lies in the calculation of the low-rank matrix, 
which remains a bottleneck.

LayerFusion applied to popular FP16 compression (semi-precision 
training) method achieved about 50% scaling factor on ResNet-50 on 
the ImageNet image classification task with 16 GPUs. This is a signif-

icant increase from the baseline (FP32) scaling factor of only about 
35%. Surprisingly, LayerFusion also significantly improved the 1-bit 
quantization methods. The scaling factor of SignSGD and EFSignSGD 
for LSTM was up to 1.41×-2.87× higher than that of the baseline and 
layer-wise compression. The corresponding improvements for ResNet-

20 and ResNet-50 were up to 1.40×-2.47× and 1.34×-2.36×.

We found that the gradient compression algorithms provided a 
lower scaling factor improvement for ResNet-20 and LSTM compared 
to the scaling factor in ResNet-50. We believe this is due to the small 
number of model layers of ResNet-20 and LSTM, and layer-wise com-

pression overhead is not a bottleneck for scalability.

To evaluate the improvement of training speed brought by the gra-
dient compression algorithms, we counted the throughput of training 
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Fig. 3. The performance of ResNet-20 on CIFAR10.

Fig. 4. The performance of ResNet-50 on ImageNet.
using different algorithms, which is shown in Table 4. It can be seen that 
the throughput of 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD on the three models is signif-

icantly ahead of other gradient compression algorithms. Furthermore, 
the throughput of all eight gradient compression algorithms, has been 
improved to some extent after the application of LayerFusion. Among 
them, DGC achieved the most significant improvement, reaching 38% 
(for ResNet-20 on CIFAR10).

5.2. Convergence efficiency

We conducted a comparative experiment to evaluate the conver-

gence efficiency of the gradient compression algorithm. Specifically, 
we trained ResNet-20 on CIFAR10 and ResNet-50 on ImageNet using 
our 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD and DGC [30], the state-of-the-art algorithm 
for training efficiency. The time-wise top-1 accuracy curves obtained 
6

during the training process are depicted in Fig. 6. The results indicate 
that the time required for convergence with 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD was 
reduced by 5.2-18.6% compared to the baseline (FP32, full-precision 
training) and more than 20% compared to DGC. The experiment results 
showed that ResNet-50 on ImageNet with DGC failed to converge under 
our experimental settings.

6. Conclusion

In this paper, we propose the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD method, based 
on the Count-Sketch data structure, to further improve the scalabil-

ity and training efficiency of DDL systems. We prove the convergence 
rate of 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD and demonstrate through extensive ex-

periments that it has the best scalability and improves training effi-

ciency by up to 18.6% compared to other gradient compression algo-

rithms. We also introduce LayerFusion, a gradient fusion algorithm in 

𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD that accelerates the distributed training of deep 
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Fig. 5. The performance of LSTM on PTB.

Table 4

The system training throughput on a 16-GPU cluster.

Method Layer-wise LayerFusion

ResNet-20 ResNet-50 LSTM ResNet-20 ResNet-50 LSTM

Top-k 976 428 1004 1073(+97) 530(+102) 1255(+251)

DGC 3416 1768 3572 4716(+1300) 2174(+406) 4136(+564)

Rand-k 1040 522 1227 1317(+277) 600(+78) 1476(+249)

QSGD 4011 2319 3471 5213(+1202) 3001(+682) 4484(+1013)

EFSignSGD 3294 2038 2719 3418(+124) 2417(+379) 3042(+323)

SignSGD 5240 3321 5864 6133(+893) 4187(+866) 6742(+878)

PowerSGD 1145 537 957 1371(+226) 542(+5) 1085(+128)

Sketch-Fusion SGD - - - 8430 6321 9864

Note: The throughput is measured with processed images per second.

Fig. 6. Validation top-1 accuracy curves of ResNet-20 and ResNet-50 trained on CIFAR10 dataset and ImageNet dataset with 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛 SGD, DGC (Layer-wise) 
and Baseline (FP32).
neural networks and improves the performance of gradient compression 
algorithms. By using a heuristic search algorithm, LayerFusion can de-

velop an optimal gradient grouping strategy without introducing extra 
hyperparameters, thus optimizing the performance of gradient compres-
7

sion algorithms. Our experiments show that LayerFusion can greatly 
improve the scalability of different gradient compression algorithms 
without sacrificing the accuracy of DNN models. In future work, consid-

ering the role of CPU in being able to offload part of the computation 
process in distributed training scenarios may significantly improve the 

effectiveness of the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD method.
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Appendix A

Assumption 5. The variance of gradient among workers is bounded, 
that is

𝔼𝜉∼𝜇𝑖,𝑛
‖‖‖▽𝑓𝑖(𝑥) −▽𝑓(𝑥)

‖‖‖22 ≤ 𝜁2 ∀𝑥, (A.1)

where 𝜇(1, 𝑛) is a discrete uniform distribution of integers from 1 to 𝑛. 
If all workers share the same training data, 𝜁 = 0.

A.1. Proof to Theorem 1

We refer to a corollary [19] and restate it here as:

Corollary 1 ([19]). Under Assumptions 1-5, if we set 𝛾 = 𝛼
√
𝐵∕𝑇 where 

𝛼 > 0 is a constant, then the convergence rate for sparsification algorithms 
is given by:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖‖‖▽𝑓 (
𝑋𝑡1𝑛
𝑛

)
‖‖‖‖
2

2
) ≤

4𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + 2𝛼𝐿𝜎2√
𝐵𝑇

+ 2𝑝𝑛2𝛼2𝐿2𝜎2 + 6𝑛𝐵𝛼2𝑝2𝐿2𝜁2

𝑇
, (A.2)

if the number of iterations satisfies 𝑇 ≥ 12𝑛𝐵𝛼2𝑝2𝐿2.

Since we assume that all workers share the same training dataset, we 
can remove the items with 𝜁 in Inequality (A.2) and obtain Theorem 1.

A.2. Proof to quantize communication

𝑄(⋅) is defined as the quantization compressor. The bound of the 

expected error of 𝑄(⋅) is defined as 𝑞𝑖 = sup
‖‖𝑄(𝑥𝑖)−𝑥𝑖‖‖22‖‖𝑥𝑖‖‖22 , where 𝑥𝑖 rep-

resents the gradients in the 𝑖𝑡ℎ group. We also define 𝑞 = max{𝑞𝑖} to 
derive the convergence rate of quantization algorithms with LayerFu-

sion under Assumption 1-3.

Theorem 2. If all workers share the same training dataset and error feed-

back is applied, and we set 𝛾 = 𝛼
√
𝐵∕𝑇 where 𝛼 > 0 is a constant and 

(1 + 𝑞

𝑛
)𝐿𝛾 < 2, LayerFusion for quantization algorithms has the convergence 

rate given by:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√
𝐵𝑇

, (A.3)

if the number of iterations 𝑇 satisfies 𝑇 ≥ 𝐵𝛼2𝐿2(1 + 𝑞

𝑛
)2. Thus, Layer-

Fusion for quantization algorithm can achieve the convergence rate of 
𝑂(1∕

√
𝐵𝑇 ).

The proof relies on the following corollary [19], which we restate:

Corollary 2 ([19]). Under Assumption 1-5, if a quantization function with 
an error bound of 𝑞 is used and 𝛾 = 𝛼

√
𝐵∕𝑇 where 𝛼 > 0 is a constant, 
8

then the following convergence rate holds for quantization algorithms:
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1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2√
𝐵𝑇

+ 𝑏√
𝐵𝑇

𝛼𝑞𝐿𝜁2,

(A.4)

if the number of iterations 𝑇 satisfies 𝑇 ≥𝐵𝛼2𝐿2(1 + 𝑞

𝑛
)2. Since we assume 

all workers share the same training dataset, the term with 𝜁 can be removed 
from Inequality (A.4), giving:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑖,𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞𝑖)𝛼𝐿𝜎2√
𝐵𝑇

+ 𝑏√
𝐵𝑇

𝛼𝑞𝐿𝜁2

≤
2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2√

𝐵𝑇
+ 𝑏√

𝐵𝑇
𝛼𝑞𝐿𝜁2,

(A.5)

Here, 𝑥𝑖,𝑡 represents the value of 𝑥𝑖 at the 𝑡𝑡ℎ iteration, and 𝑞 = max 𝑞𝑖. 
Since |∇𝑓 (𝑥)|22 =∑𝑦

𝑖=1
||∇𝑓 (𝑥𝑖)||22, we can simplify further and obtain:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) = 𝑦∑
𝑖=1

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑖,𝑡)‖‖22)
≤

2𝛼−1(
∑𝑦

𝑖=1 𝑓 (𝑥𝑖,0) −
∑𝑦

𝑖=1 𝑓
∗(𝑥𝑖)) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√

𝐵𝑇

≤
2𝛼−1(𝑓 (𝑥0) −

∑𝑦

𝑖=1 𝑓
∗) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√

𝐵𝑇
. (A.6)

Since 𝐹 ∗ is the optimal solution, we have 𝑓≤
∑𝑦

𝑖=1 𝑓
∗(𝑥𝑖). We can rewrite 

Inequality (A.6) as follows:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√
𝐵𝑇

. (A.7)
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