
Journal of Parallel and Distributed Computing 185 (2024) 104811

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Sketch-fusion: A gradient compression method with multi-layer fusion for

communication-efficient distributed training

Lingfei Dai a,b, Luqi Gong a, Zhulin An a, Yongjun Xu a, Boyu Diao a,∗

a Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
b College of Computer Science, University of Chinese Academy of Sciences, Beijing, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Gradient compression

Multi-layer fusion

Distributed stochastic gradient descent

Deep learning training

Gradient compression is an effective technique for improving the efficiency of distributed training. However,
introducing gradient compression can reduce model accuracy and training efficiency. Furthermore, we also
find that using a layer-wise gradient compression algorithm would lead to significant compression and
communication overhead, which can negatively impact the scaling efficiency of the distributed training system.
To address these issues, we propose a new method called 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which leverages the Count-Sketch
data structure to enhance the scalability and training speed of distributed deep learning systems. Moreover,
our method employs LayerFusion to optimize gradient compression algorithms’ scalability and convergence
efficiency by formulating an optimal multi-layer fusion strategy without introducing extra hyperparameters.
We evaluate our method on a cluster of 16 GPUs and demonstrate that it can improve training efficiency by
up to 18.6% without compromising the model’s accuracy. In addition, we find that applying our LayerFusion
algorithm to other gradient compression methods improved their scalability by up to 2.87×.
1. Introduction

Deep learning has gained widespread popularity in various fields
such as Computer Vision, Natural Language Processing, and Speech
Recognition [24,13,31]. Most deep learning networks have achieved
state-of-the-art performance across different domains [43,53,36,22,57].
Stochastic gradient descent (SGD) and its various variants [12] remain
the primary methods for training deep learning networks. However,
deep learning models require large-scale datasets such as ImageNet
[37] for training. With the rapid increase in the number of parameters
in deep neural networks (DNNs), training times have become longer,
sometimes taking days to weeks [15].

To enhance the training efficiency of deep learning models, high-

performance processors such as NVIDIA A100 [9], Google TPU [21],
and Huawei Ascend910 [51] are employed to reduce training times.
Furthermore, synchronous data parallel stochastic gradient descent is
a widely adopted approach for distributed learning [27]. During the
communication phase of data parallel training, a significant number of
gradients need to be transmitted between servers. The network commu-

nication overhead for parameter information poses a severe bottleneck
to the performance of distributed training [26].

* Corresponding author.

In recent years, there has been an increased focus on addressing
communication bottlenecks in distributed training, leading to a lot of
research. A significant body of work has proposed gradient compression
algorithms [16,18,49,54] to reduce the amount of data transferred si-
multaneously, thereby reducing communication overhead and improv-

ing scalability. Two primary types of gradient compression methods
have emerged: 1) sparsification, which selects a subset of gradients for
aggregation [45,30,47]; and 2) quantization, which quantizes gradients
(e.g., FP32) to fewer bits (e.g., INT8) [3,10]. Theoretically, gradient
compression can significantly reduce communication overhead thanks
to smaller communication data sizes [4,28].

Gradient compression reduces communication overhead in dis-

tributed training, but it can harm model accuracy and scalability
[19,38,52,14]. To overcome this challenge, we propose a new method,
𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which compresses gradients using the Count-

Sketch data structure on local servers. We found that using a layer-wise
gradient compression algorithm would lead to significant compression
and communication overhead. Therefore, we also propose a multi-layer
fusion algorithm, called LayerFusion, to optimize the scalability and
convergence efficiency of gradient compression algorithms and acceler-

ate the distributed training of DNNs.
Available online 24 November 2023
0743-7315/© 2023 Elsevier Inc. All rights reserved.

E-mail address: diaoboyu2012@ict.ac.cn (B. Diao).

https://doi.org/10.1016/j.jpdc.2023.104811

Received 12 March 2023; Received in revised form 8 July 2023; Accepted 19 Novem
ber 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:diaoboyu2012@ict.ac.cn
https://doi.org/10.1016/j.jpdc.2023.104811
https://doi.org/10.1016/j.jpdc.2023.104811
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104811&domain=pdf

L. Dai, L. Gong, Z. An et al.

Our contributions are summarized as follows:

∙ We introduce 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which can effectively im-

prove the training speed of various DNNs and datasets under low-

bandwidth networks.

∙ We propose LayerFusion as a heuristic algorithm to improve the
scalability of gradient compression algorithms and guarantee their
convergence rate.

∙ We demonstrate the effectiveness of our approach by applying
LayerFusion to various gradient compression algorithms.

The rest of the paper is organized as follows. Section 2 provides
background information on deep learning, stochastic gradient descent,
and distributed learning. In section 3, we discuss the limitations of
current gradient compression algorithms and the motivation for our
proposed approach. Section 4 introduces our proposed 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛
SGD method with LayerFusion and provides a theoretical analysis of
its convergence rate. Section 5 presents experimental results and dis-

cussions, including comparisons with other compression methods and
analyses of the trade-offs between compression ratio, communication
overhead, and model accuracy. Finally, we conclude the paper in Sec-

tion 6 and suggest directions for future research.

2. Background

We first introduce the communication overhead in distributed train-

ing and then describe the methods to reduce it in the current DL frame-

work.

2.1. Communication in distributed deep learning

The data-parallel paradigm of distributed deep learning (DDL) in-

volves each accelerator (e.g., GPU, TPU) having a replica of the model,
and the training dataset is divided into subsets based on the number of
GPUs. Each iteration involves the accelerator reading a batch of train-

ing data from its own training data subset, calculating the gradient
tensor by forward and backward propagation, and using it to update
the DNN model. An important step is aggregating the gradient tensors
computed by all GPUs synchronously or asynchronously. Synchronous
data-parallel DDL, where all GPUs communicate the gradient tensors
and wait for the aggregated results before the next iteration, is the
de facto standard used by DDL frameworks [27,20,39]. Asynchronous
data-parallel DDL, where GPUs do not wait for aggregation to complete,
may harm model accuracy [8].

In distributed training clusters with multiple machines, there is both
intra-machine communication and inter-machine communication. Hi-

erarchical communication is often used in DDL frameworks [27,20,39],
where gradient synchronization is carried out in three steps: 1) gradi-

ents are aggregated among GPUs within one machine; 2) they are then
aggregated across machines; 3) the aggregated gradients are commu-

nicated within one machine again to ensure all GPUs have the same
synchronized results. Some frameworks [27,39] also support flat com-

munication, where all GPUs join the same collective operation and have
only one communication step.

2.2. Gradient compression

Gradient compression (GC) algorithms have been proposed to re-

duce communication overhead in DDL. These algorithms can be broadly
categorized into two types: sparsification and quantization. Sparsifica-

tion involves selecting a subset of gradients for synchronization [30,2],
which minimizes gradient exchange while ensuring model accuracy.
Quantization, on the other hand, reduces communication overhead by
reducing the precision of gradients. This is achieved by mapping FP32
gradients to lower bit precision, such as 8 bits [10], 2 bits [19], or even
2

1 bit [7]. These compression algorithms have been shown to preserve
Journal of Parallel and Distributed Computing 185 (2024) 104811

model convergence and impose negligible impact on model accuracy
when combined with error-feedback mechanisms, as validated through
theoretical proofs and empirical studies [50,44].

2.3. Computation and communication overlap

A deep neural network comprises multiple layers, and the back-

propagation process involves layer-by-layer computation, meaning that
the gradient of the previous layer is already available when calculating
the gradient of the current layer. To enhance the scalability and per-

formance of DNNs, many studies [55,40,27,45,35,39] have proposed
overlapping computation and communication by transmitting partial
gradient information as soon as it becomes available instead of wait-

ing for all gradient information to be ready. This approach, known as
wait-free back-propagation (WFBP), is now widely adopted in popular
machine learning frameworks, such as PyTorch [27], TensorFlow [1],
and Horovod [39], to boost the training efficiency of distributed DNNs.
The concept of overlapping computation and communication is also ex-

ploited in our LayerFusion algorithm.

3. Motivation

In this section, we aim to assess the scalability and compression ef-

ficiency of existing gradient compression algorithms through detailed
experimental evaluations. To analyze the effect of gradient compres-

sion, we start by examining gradient calculation. We then conduct
large-scale experiments to investigate the scalability of the GC algo-

rithms across a range of models. The experimental setup is consistent
with that described in Section 5.

3.1. Performance verification

To evaluate the performance of gradient compression, we conducted
experiments to evaluate several popular compression methods, includ-

ing sparsification and quantization methods. The performance of a com-

pression algorithm can be measured by its scaling factor [56] and the
time required for compression and decompression. The scaling factor is
defined as the ratio of the training time on 𝑛 accelerators to the train-

ing time on a single accelerator, denoted as 𝑇𝑛 and 𝑇1, respectively.
Specifically, the scaling factor is computed as:

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑛

𝑛𝑇1
(1)

Fig. 1a shows the scaling factors of various compression algorithms
with layer-wise compression for ResNet-20 on the CIFAR10 dataset,
with the baseline referring to full-precision gradient training without
using the compression algorithm. Despite the good expansion efficiency
of these compression algorithms in theory, actual experimental results
show that they do not scale well and perform even worse than the
baseline. In particular, the Top-k and DGC [30] algorithms have a per-

formance more than 40% lower than the baseline.

In addition, we also measure the compression-decompression time
of different gradient compression algorithms using ResNet-50 on V100
GPUs. Table 1 shows that most compression algorithms take more
than 100 ms to compress and decompress gradients for ResNet-50 on
V100 GPUs. The slowest algorithm is DGC, which takes 242 ms, while
SignSGD takes only 13 ms.

3.2. Rethinking gradient compression

To analyze the poor performance of gradient compression, we con-

ducted tests to measure the compressing overhead of different gradient
compression algorithms across varying tensor sizes. The results were
presented in Fig. 1b. From the graph, it is evident that the compression
overhead of most algorithms cannot be ignored regardless of tensor size.

During distributed training, deep neural network models have multiple

Journal of Parallel and Distributed Computing 185 (2024) 104811L. Dai, L. Gong, Z. An et al.

Fig. 1. (a) The scaling factors of ResNet-20 on CIFAR10 dataset with various gradient compression algorithms. (b) The compressing overhead of tensors of different
sizes under different compression algorithms. (c) The total number of tensors for synchronization in different DNNs.

Fig. 2. Distributed training with different methods.
Table 1

The time for compression and decompression of gra-

dient compression methods for ResNet-50 on V100
GPUs.

Type Method 𝑇𝑐𝑜𝑚𝑝_𝑑𝑒𝑐𝑜𝑚𝑝(𝑚𝑠)

Sparsification Top-K - 1% 122

DGC - 1% 242

Random-K - 1% 187

Quantization QSGD - 2 bit 46

SignSGD 13

TernGrad 70

Low Rank PowerSGD - Rank 4 174

tensors to synchronize, as illustrated in Fig. 1b. Given these observa-

tions, we believe that the compression of the gradient of the DNN model
layer by layer can lead to significant compressing overhead, which is a
significant reason for the poor performance of the compression algo-

rithm.

The gradient compression algorithm necessitates a trade-off between
model accuracy and compression rate. When the compression rate of the
algorithm is excessively high, it can improve the training speed, but the
loss of model accuracy will be substantial. Conversely, if the compres-

sion rate is too low, the model’s accuracy is ensured, but the training
speed is not improved. Therefore, selecting an imbalanced hyperparam-
3

eter, like the parameter k in Top-k, results in poor performance.
The use of layer-wise gradient compression algorithms can lead to
significant compression and communication overhead, which can neg-

atively impact the efficiency of the distributed training process. The
communication process incurs a fixed overhead during startup, as doc-

umented in [41], and there is also a fixed overhead for starting and
executing the kernel in CUDA [5]. However, our experiments have
shown that most gradient compression algorithms are not significantly
affected by the size of the gradient tensor, with the compression over-

head not doubling even as the tensor size increases from 24 to 220.
This observation has led us to develop a strategy for optimizing the
layer-wise method by fusing multiple gradient tensors, which can sub-

stantially reduce the compression overhead and improve the efficiency
of the distributed training process.

As shown in Fig. 2, we need to find a gradient fusion strategy to
make the gradient compression algorithm optimal. However, overlap
between the computation and communication needs to be considered
when fusing multiple gradient tensors. For example, an extreme case
would be to fuse the gradient of the entire model into a single ten-

sor. Although the compression algorithm will only be called once, the
communication process cannot be started before the computation is
completed, and there is no overlap between the calculation and com-

munication process, resulting in extremely low training efficiency.

To achieve optimal results, the design of a gradient fusion strategy
should consider various factors, including the compression algorithms
utilized, the characteristics of the deep neural network models, and

the cluster configuration, such as the network bandwidth and the num-

L. Dai, L. Gong, Z. An et al.

ber of workers. To enhance the actual performance of the compression
algorithm, we propose the LayerFusion algorithm. Additionally, to en-

hance the training efficiency and scalability of DDL systems, we propose
the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD. These methods aim to improve the over-

all training efficiency by reducing the compression and communication
overhead while maintaining a high level of accuracy.

4. Method

In this section, we introduce our method, which aims to improve
the scalability and model convergence efficiency of distributed train-

ing. Firstly, we propose the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, which is designed
to enhance the scalability and training speed of distributed training.
We then present LayerFusion, which is employed in 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛
SGD to optimize the scalability and convergence efficiency of gradi-

ent compression algorithms. Finally, we demonstrate how LayerFusion
can automatically determine an optimal gradient fusion strategy with-

out introducing additional hyperparameters. Additionally, we provide
theoretical proof of the convergence rate of our proposed method.

4.1. Overview

In 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD, each server transmits the sketch of the
gradient tensor instead of the entire or compressed gradient tensor. To
achieve this, each server compresses its gradient into a 𝐶𝑜𝑢𝑛𝑡 −𝑆𝑘𝑒𝑡𝑐ℎ
structure locally. During the aggregation phase, the servers add up their
compressed gradient sketches. Then, in Line 7, the algorithm recovers
the top-𝑘 largest gradient elements by magnitude from the summed
sketch and uses the exact values of these top-𝑘 elements to update the
weight. The algorithm used to recover the top-𝑘 elements from the
summed sketch is called HEAVYMIX, which was introduced in [17].
This approach can improve the scalability and convergence efficiency
of distributed training.

Algorithm 1 Sketch-Fusion SGD.

Input: dataset 𝐷; model 𝑿 = {𝑥1, ..., 𝑥𝑦}; learning rate 𝜂; the number of iterations to
train: 𝑇 ; the sparsity rate: 𝑘; the number of workers: 𝑁 ;

1: for 𝑡 = 0 → 𝑇 do

2: Sampling a mini-batch of data 𝐷𝑡 from 𝐷;

3: for 𝑖 = 0 → 𝑦 do

4: Compute stochastic gradient 𝐺𝑖,𝑡 ;
5: Compute sketches 𝑆𝑔𝑡 of 𝐺𝑖,𝑡 ;
6: Aggregate sketches 𝑆𝑡 = 1

𝑁

∑𝑁

𝑝=1 𝑆
𝑝
𝑡 ;

7: Compute decompressed gradient 𝐺𝑖,𝑡 =𝐻𝐸𝐴𝑉 𝑌𝑀𝐼𝑋(𝑆𝑡, 𝑘); [17]

8: 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 − 𝜂𝐺𝑖,𝑡
9: end for

10: end for

Effectively reduces the computational overhead. Moreover, commu-

nication and computation are overlapped to further reduce the commu-

nication overhead.

In LayerFusion, the key idea is to reduce the number of calls to the
gradient compression algorithm. This is achieved by fusing the gradient
tensors, which reduces computational overhead. Moreover, communi-

cation and computation are overlapped to further reduce the communi-

cation overhead.

Specifically, LayerFusion divides a model 𝑋 into 𝑦 groups, i.e.,
𝑿 = 𝑥1, ..., 𝑥𝑦, and gradient tensors in the same group are fused and
compressed together in a compression operation. 𝑇 is the total num-

ber of training iterations, and 𝑥𝑖,𝑡 represents 𝑥𝑖 in the 𝑡𝑡ℎ iteration. The
gradient compression algorithm 𝐶(⋅) may include methods such as spar-

sification, quantization, or low-rank approximation, and 𝐶−1(⋅) is the
corresponding decompression algorithm.

Moreover, LayerFusion supports a series of communication schemes
for different compression algorithms, including all-reduce [39,34], all-

gather [46], and parameter server [25]. Communication is overlapped
4

with backpropagation to minimize the communication overhead. After
Journal of Parallel and Distributed Computing 185 (2024) 104811

communication, the fused and compressed gradients are decompressed
and aggregated to update the model. The entire process is summarized
in Algorithm 2.

Algorithm 2 LayerFusion for compression methods.

Input: dataset 𝐷; model 𝑿 = {𝑥1, ..., 𝑥𝑦}; learning rate 𝜂; compression function 𝐶(⋅); the
number of iterations to train: 𝑇

1: for 𝑡 = 0 → 𝑇 do

2: Sampling a mini-batch of data 𝐷𝑡 from 𝐷;

3: for 𝑖 = 0 → 𝑦 do

4: Compute stochastic gradient 𝐺𝑖,𝑡 ;
5: Compute compressed gradient 𝛿𝑖,𝑡 = 𝐶(𝐺𝑖,𝑡);
6: Communicate compressed gradients Δ𝑖,𝑡 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝛿𝑖,𝑡);
7: Aggregate gradients from all workers 𝐺𝑖,𝑡 = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐶−1(Δ𝑖,𝑡));
8: 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 − 𝜂𝐺𝑖,𝑡
9: end for

10: end for

4.2. Theoretical guarantee

In this section, we provide an analysis of the convergence rate of
the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD method with the sparsified gradient com-

pression algorithm using LayerFusion. We should note that the analysis
presented below is specifically focused on synchronous data-parallel
distributed SGD.

4.2.1. Preliminaries

We define 𝐹 (⋅) as the loss function we need to optimize, and the
stochastic optimization problem we study can be expressed as:

min𝑓 (𝑥) = 1
𝑛

𝑛∑
𝑖=1

𝔼𝜉∼𝐷𝑖𝐹𝑖(𝑥; 𝜉) (2)

Here, 𝑛 is the number of workers in the cluster, 𝐷𝑖 is a subset of the
training dataset on worker 𝑖, and 𝐹𝑖(𝑥; 𝜉) is the loss computed from
data on worker 𝑖.

In this subsection, we use assumptions for the loss function and the
variance of the stochastic gradient to analyze the convergence rate of
the 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛 SGD method. The following symbols are used: |⋅|2
denotes the L2 norm of a tensor or the spectral norm of a matrix; ▽𝑓 (⋅)
denotes the gradient of a function 𝑓 ; 1𝑛 denotes the column tensor in
ℝ𝑛 with 1 for all elements; and 𝑓∗ denotes the optimal solution for the
stochastic optimization problem.

Assumption 1 (Lipschiz continuity). ▽𝑓 (⋅)′ is Lipschitz continuous with
respect to the L2 norm, i.e.,

‖‖▽𝑓𝑖(𝑥) −▽𝑓𝑖(𝑦)‖‖2 ≤𝐿‖𝑥− 𝑦‖2 ∀𝑥,∀𝑦,∀𝑖. (3)

Assumption 2 (Bounded variance). The variance of stochastic gradient
is bounded, i.e.,

𝔼𝜉∼𝐷𝑖
‖‖▽𝐹𝑖(𝑥; 𝜉) −▽𝑓𝑖(𝑥)‖‖22 ≤ 𝜎2 ∀𝑥,∀𝑖. (4)

Assumption 3 (Unbiasedness). The stochastic gradient of 𝐹𝑖(𝑥; 𝜉) is un-

biased, i.e.,

𝔼𝜉∼𝐷𝑖▽𝐹𝑖(𝑥; 𝜉) =▽𝑓𝑖(𝑥) ∀𝑥,∀𝑖. (5)

Assumption 4. Gradient sparsification algorithms can exchange all the
gradients in any 𝑝 consecutive iterations.

These assumptions are commonly employed in previous works to

analyze the convergence rate of distributed SGD [19,3,11,17,29].

L. Dai, L. Gong, Z. An et al.

Table 2

Frequantly used notations.

Name Description

𝑁 the number of tensors of a DNN model

𝛽 the computation time of each iteration

𝑦 the number of groups into which the model is divided

𝑥𝑖 the size of the 𝑖𝑡ℎ group

𝑋𝑦 a multi-layer fusion strategy of the DNN model

𝐶𝑜𝑚𝑝(𝑥𝑖) the compression time of the 𝑖𝑡ℎ group

𝐶𝑜𝑚𝑚(𝑥𝑖) the communication time of the 𝑖𝑡ℎ group

𝑝(𝑥𝑖) the overlap time between the computation time

and communication time

4.2.2. Sparsified communication

Partial gradient transmission achieves the same convergence rate as
vanilla distributed SGD. It has been shown in previous works on gra-

dient sparsification [44,17,20,6]. Since LayerFusion selects an essential
partial gradient tensor for communication, it can maintain the same
convergence rate as the applied gradient sparsification algorithms.

Theorem 1. In data-parallel distributed training, all workers share the same
training dataset. When 𝛾 = 𝛼

√
𝐵∕𝑇 , where 𝛼 > 0 is a constant, 𝐵 is the to-

tal mini-batch size on all workers, 𝐿𝛾 ≤ 1, and 6𝑛𝑝2𝐿2𝛾2 < 1, LayerFusion
for gradient sparsification algorithms has the convergence rate as shown in
the following equation:

1
𝑇

(
𝑇−1∑
𝑡=0

|||||▽𝑓

(
𝑋𝑡1𝑛
𝑛

)|||||
2

2

)

≤
4𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + 2𝛼𝐿𝜎2√

𝐵𝑇
+ 2𝑝𝑛2𝛼2𝐿2𝜎2

𝑇
, (6)

when the number of iterations satisfies 𝑇 ≥ 12𝑛𝐵𝛼2𝑝2𝐿2. Previous work
[19] has proven Theorem 1 under a different assumption of the training
dataset. Here, 𝑋𝑡1𝑛

𝑛
is the average of the gradients on all workers. If the

number of iterations 𝑇 is large enough, the right side of Equation (6) is
dominated by its first term. And the LayerFusion algorithm for gradient spar-

sification achieves the same 𝑂(1√
𝐵𝑇

) convergence rate as vanilla distributed
SGD [44]. Please refer to the appendix for the proof of quantized communi-

cation.

4.3. Method for searching the optimal fusion strategy

To determine the optimal computation-communication overlap
strategy, previous work has abstracted the problem as an optimiza-

tion problem [41]. Similarly, we have abstracted the fusion problem as
an optimization problem and propose our algorithm, LayerFusion, for
searching the optimal gradient fusion strategy. Table 2 lists the common
notations we use.

The goal of LayerFusion is to minimize the iteration time of com-

pression algorithms. Using the WFBP method to overlap computation
and communication can reduce the overall iteration time. Therefore,
the target formula for this problem is:

min
𝑦∈[1,𝑁]

min
𝑋𝑦∈𝑦

𝐹 (𝑋𝑦) =
𝑦∑
𝑖=1
𝐶𝑜𝑚𝑝(𝑥𝑖) +

𝑦∑
𝑖=1
𝐶𝑜𝑚𝑚(𝑥𝑖) + 𝛽 −

𝑦∑
𝑖=1
𝑝(𝑥𝑖) (7)

Here, 𝑦 is the set of all possible fusion strategies with 𝑦 groups. Layer-

Fusion heuristically searches for an optimal multi-layer fusion strategy,
but we have found that the gain of LayerFusion decreases as the number
of groups of gradient fusion increases for most models and compres-

sion algorithms. To address this, we introduce prior knowledge into
the heuristic search algorithm. If the performance of strategy 𝐹 (𝑋𝑦) is
worse than 𝐹 (𝑋𝑦−1) or the difference is less than 𝜖𝐹𝑚𝑖𝑛(𝑋𝑦−1) (where 𝜖
is a constant parameter), the algorithm terminates, and 𝑋𝑦 is returned.
Moreover, LayerFusion adopts binary search when searching 𝑋𝑦, so the
5

time complexity is 𝑂(𝑁 log𝑁).
Journal of Parallel and Distributed Computing 185 (2024) 104811

Table 3

The experimental setup of training deep models.

Model Dataset Epochs 𝑏 𝜂

ResNet-20 CIFAR10 140 128 0.1

VGG-16 CIFAR10 140 128 0.1

ResNet-50 ImageNet 140 128 0.01

LSTM PTB 65 32 0.01

5. Experiment

To thoroughly evaluate the effectiveness and generalizability of our
proposed method, we conducted experiments using various represen-

tative DNNs from different AI domains and with different datasets.
Specifically, we chose the CIFAR10 dataset [23] consisting of 50,000
training samples, the ImageNet dataset [37] containing about 1.2 mil-

lion images for classification, and the Penn TreeBank (PTB) dataset [32]

in the natural language processing field, containing 923,000 language
samples. For each dataset, we selected a neural network model with
high accuracy and computational efficiency. For CIFAR10, we used the
ResNet-20 [15] and VGG-16 [43] models, and for ImageNet, we em-

ployed the ResNet-50 [15] model. The PTB dataset was tested on an
LSTM language model with two hidden layers [42]. We chose these
DNNs because they were used in the original papers of the compared
methods for comparative experiments [33,30,48,3]. The training details
and hyperparameters for the models are listed in Table 3, where 𝑏 de-

notes the batch size, and 𝜂 refers to the learning rate. All models were
trained with 32-bit floating-point precision.

We conducted all experiments on a cluster of 16 NVIDIA Tesla
V100 GPUs with 32 GB memory and two 24-core/48-thread Intel Xeon
Gold 6252 2.1 GHz processors. The servers in the cluster are running
the Ubuntu 18.04 LTS system and are equipped with PyTorch-1.8.1,
Horovod-0.22.1, CUDA-11.1, OpenMPI-4.1.3, and NCCL-2.8.3, all con-

nected by Ethernet with 20 Gbps bandwidth.

5.1. Training speed improvement

We conducted an experiment using LayerFusion on eight gradient
compression algorithms and our proposed 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD on
three different DNN models using different datasets. Figs. 3-5 show the
performance of various gradient compression algorithms with LayerFu-

sion. The light-colored cylinder in the figure represents the improve-

ment of the gradient compression algorithm with LayerFusion. Among
them, the Top-k algorithm improved by 1.58×-2.51× in the task scenario
of ResNet-20 on CIFAR10. Additionally, almost all gradient compression
algorithms using LayerFusion exceeded the baseline performance. The
𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD achieved the optimal scaling factor in different
task scenarios and different numbers of cluster GPUs. Unfortunately,
there was no significant improvement in the PowerSGD algorithm. We
believe the main issue lies in the calculation of the low-rank matrix,
which remains a bottleneck.

LayerFusion applied to popular FP16 compression (semi-precision
training) method achieved about 50% scaling factor on ResNet-50 on
the ImageNet image classification task with 16 GPUs. This is a signif-

icant increase from the baseline (FP32) scaling factor of only about
35%. Surprisingly, LayerFusion also significantly improved the 1-bit
quantization methods. The scaling factor of SignSGD and EFSignSGD
for LSTM was up to 1.41×-2.87× higher than that of the baseline and
layer-wise compression. The corresponding improvements for ResNet-

20 and ResNet-50 were up to 1.40×-2.47× and 1.34×-2.36×.

We found that the gradient compression algorithms provided a
lower scaling factor improvement for ResNet-20 and LSTM compared
to the scaling factor in ResNet-50. We believe this is due to the small
number of model layers of ResNet-20 and LSTM, and layer-wise com-

pression overhead is not a bottleneck for scalability.

To evaluate the improvement of training speed brought by the gra-
dient compression algorithms, we counted the throughput of training

Journal of Parallel and Distributed Computing 185 (2024) 104811L. Dai, L. Gong, Z. An et al.

Fig. 3. The performance of ResNet-20 on CIFAR10.

Fig. 4. The performance of ResNet-50 on ImageNet.
using different algorithms, which is shown in Table 4. It can be seen that
the throughput of 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD on the three models is signif-

icantly ahead of other gradient compression algorithms. Furthermore,
the throughput of all eight gradient compression algorithms, has been
improved to some extent after the application of LayerFusion. Among
them, DGC achieved the most significant improvement, reaching 38%
(for ResNet-20 on CIFAR10).

5.2. Convergence efficiency

We conducted a comparative experiment to evaluate the conver-

gence efficiency of the gradient compression algorithm. Specifically,
we trained ResNet-20 on CIFAR10 and ResNet-50 on ImageNet using
our 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD and DGC [30], the state-of-the-art algorithm
for training efficiency. The time-wise top-1 accuracy curves obtained
6

during the training process are depicted in Fig. 6. The results indicate
that the time required for convergence with 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD was
reduced by 5.2-18.6% compared to the baseline (FP32, full-precision
training) and more than 20% compared to DGC. The experiment results
showed that ResNet-50 on ImageNet with DGC failed to converge under
our experimental settings.

6. Conclusion

In this paper, we propose the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD method, based
on the Count-Sketch data structure, to further improve the scalabil-

ity and training efficiency of DDL systems. We prove the convergence
rate of 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD and demonstrate through extensive ex-

periments that it has the best scalability and improves training effi-

ciency by up to 18.6% compared to other gradient compression algo-

rithms. We also introduce LayerFusion, a gradient fusion algorithm in

𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD that accelerates the distributed training of deep

Journal of Parallel and Distributed Computing 185 (2024) 104811L. Dai, L. Gong, Z. An et al.

Fig. 5. The performance of LSTM on PTB.

Table 4

The system training throughput on a 16-GPU cluster.

Method Layer-wise LayerFusion

ResNet-20 ResNet-50 LSTM ResNet-20 ResNet-50 LSTM

Top-k 976 428 1004 1073(+97) 530(+102) 1255(+251)

DGC 3416 1768 3572 4716(+1300) 2174(+406) 4136(+564)

Rand-k 1040 522 1227 1317(+277) 600(+78) 1476(+249)

QSGD 4011 2319 3471 5213(+1202) 3001(+682) 4484(+1013)

EFSignSGD 3294 2038 2719 3418(+124) 2417(+379) 3042(+323)

SignSGD 5240 3321 5864 6133(+893) 4187(+866) 6742(+878)

PowerSGD 1145 537 957 1371(+226) 542(+5) 1085(+128)

Sketch-Fusion SGD - - - 8430 6321 9864

Note: The throughput is measured with processed images per second.

Fig. 6. Validation top-1 accuracy curves of ResNet-20 and ResNet-50 trained on CIFAR10 dataset and ImageNet dataset with 𝑆𝑘𝑒𝑡𝑐ℎ −𝐹𝑢𝑠𝑖𝑜𝑛 SGD, DGC (Layer-wise)
and Baseline (FP32).
neural networks and improves the performance of gradient compression
algorithms. By using a heuristic search algorithm, LayerFusion can de-

velop an optimal gradient grouping strategy without introducing extra
hyperparameters, thus optimizing the performance of gradient compres-
7

sion algorithms. Our experiments show that LayerFusion can greatly
improve the scalability of different gradient compression algorithms
without sacrificing the accuracy of DNN models. In future work, consid-

ering the role of CPU in being able to offload part of the computation
process in distributed training scenarios may significantly improve the

effectiveness of the 𝑆𝑘𝑒𝑡𝑐ℎ − 𝐹𝑢𝑠𝑖𝑜𝑛 SGD method.

L. Dai, L. Gong, Z. An et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential.

Appendix A

Assumption 5. The variance of gradient among workers is bounded,
that is

𝔼𝜉∼𝜇𝑖,𝑛
‖‖‖▽𝑓𝑖(𝑥) −▽𝑓(𝑥)

‖‖‖22 ≤ 𝜁2 ∀𝑥, (A.1)

where 𝜇(1, 𝑛) is a discrete uniform distribution of integers from 1 to 𝑛.
If all workers share the same training data, 𝜁 = 0.

A.1. Proof to Theorem 1

We refer to a corollary [19] and restate it here as:

Corollary 1 ([19]). Under Assumptions 1-5, if we set 𝛾 = 𝛼
√
𝐵∕𝑇 where

𝛼 > 0 is a constant, then the convergence rate for sparsification algorithms
is given by:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖‖‖▽𝑓 (
𝑋𝑡1𝑛
𝑛

)
‖‖‖‖
2

2
) ≤

4𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + 2𝛼𝐿𝜎2√
𝐵𝑇

+ 2𝑝𝑛2𝛼2𝐿2𝜎2 + 6𝑛𝐵𝛼2𝑝2𝐿2𝜁2

𝑇
, (A.2)

if the number of iterations satisfies 𝑇 ≥ 12𝑛𝐵𝛼2𝑝2𝐿2.

Since we assume that all workers share the same training dataset, we
can remove the items with 𝜁 in Inequality (A.2) and obtain Theorem 1.

A.2. Proof to quantize communication

𝑄(⋅) is defined as the quantization compressor. The bound of the

expected error of 𝑄(⋅) is defined as 𝑞𝑖 = sup
‖‖𝑄(𝑥𝑖)−𝑥𝑖‖‖22‖‖𝑥𝑖‖‖22 , where 𝑥𝑖 rep-

resents the gradients in the 𝑖𝑡ℎ group. We also define 𝑞 = max{𝑞𝑖} to
derive the convergence rate of quantization algorithms with LayerFu-

sion under Assumption 1-3.

Theorem 2. If all workers share the same training dataset and error feed-

back is applied, and we set 𝛾 = 𝛼
√
𝐵∕𝑇 where 𝛼 > 0 is a constant and

(1 + 𝑞

𝑛
)𝐿𝛾 < 2, LayerFusion for quantization algorithms has the convergence

rate given by:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√
𝐵𝑇

, (A.3)

if the number of iterations 𝑇 satisfies 𝑇 ≥ 𝐵𝛼2𝐿2(1 + 𝑞

𝑛
)2. Thus, Layer-

Fusion for quantization algorithm can achieve the convergence rate of
𝑂(1∕

√
𝐵𝑇).

The proof relies on the following corollary [19], which we restate:

Corollary 2 ([19]). Under Assumption 1-5, if a quantization function with
an error bound of 𝑞 is used and 𝛾 = 𝛼

√
𝐵∕𝑇 where 𝛼 > 0 is a constant,
8

then the following convergence rate holds for quantization algorithms:
Journal of Parallel and Distributed Computing 185 (2024) 104811

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2√
𝐵𝑇

+ 𝑏√
𝐵𝑇

𝛼𝑞𝐿𝜁2,

(A.4)

if the number of iterations 𝑇 satisfies 𝑇 ≥𝐵𝛼2𝐿2(1 + 𝑞

𝑛
)2. Since we assume

all workers share the same training dataset, the term with 𝜁 can be removed
from Inequality (A.4), giving:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑖,𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞𝑖)𝛼𝐿𝜎2√
𝐵𝑇

+ 𝑏√
𝐵𝑇

𝛼𝑞𝐿𝜁2

≤
2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2√

𝐵𝑇
+ 𝑏√

𝐵𝑇
𝛼𝑞𝐿𝜁2,

(A.5)

Here, 𝑥𝑖,𝑡 represents the value of 𝑥𝑖 at the 𝑡𝑡ℎ iteration, and 𝑞 = max 𝑞𝑖.
Since |∇𝑓 (𝑥)|22 =∑𝑦

𝑖=1
||∇𝑓 (𝑥𝑖)||22, we can simplify further and obtain:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) = 𝑦∑
𝑖=1

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑖,𝑡)‖‖22)
≤

2𝛼−1(
∑𝑦

𝑖=1 𝑓 (𝑥𝑖,0) −
∑𝑦

𝑖=1 𝑓
∗(𝑥𝑖)) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√

𝐵𝑇

≤
2𝛼−1(𝑓 (𝑥0) −

∑𝑦

𝑖=1 𝑓
∗) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√

𝐵𝑇
. (A.6)

Since 𝐹 ∗ is the optimal solution, we have 𝑓≤
∑𝑦

𝑖=1 𝑓
∗(𝑥𝑖). We can rewrite

Inequality (A.6) as follows:

1
𝑇
(
𝑇−1∑
𝑡=0

‖‖▽𝑓 (𝑥𝑡)‖‖22) ≤ 2𝛼−1(𝑓 (𝑥0) − 𝑓 ∗) + (1 + 𝑞)𝛼𝐿𝜎2𝑦√
𝐵𝑇

. (A.7)

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-

war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow: Large-scale machine learning
on heterogeneous distributed systems, arXiv :1603 .04467, 2016.

[2] A.F. Aji, K. Heafield, Sparse communication for distributed gradient descent, in:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017, pp. 440–445.

[3] D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, QSGD: communication-

efficient SGD via gradient quantization and encoding, Adv. Neural Inf. Process. Syst.
30 (2017) 1709–1720.

[4] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, C. Renggli,
The convergence of sparsified gradient methods, Adv. Neural Inf. Process. Syst. 31
(2018) 5973–5983.

[5] Y. Arafa, A.H.A. Badawy, G. Chennupati, N. Santhi, S. Eidenbenz, Low overhead
instruction latency characterization for nvidia gpgpus, in: 2019 IEEE High Perfor-

mance Extreme Computing Conference, 2019, pp. 1–8.

[6] D. Basu, D. Data, C. Karakus, S. Diggavi, Qsparse-local-SGD: distributed SGD with
quantization, sparsification and local computations, Adv. Neural Inf. Process. Syst.
32 (2019).

[7] J. Bernstein, Y.X. Wang, K. Azizzadenesheli, A. Anandkumar, signSGD: compressed
optimisation for non-convex problems, in: International Conference on Machine
Learning, 2018, pp. 560–569.

[8] J. Chen, X. Pan, R. Monga, S. Bengio, R. Jozefowicz, Revisiting distributed syn-

chronous SGD, arXiv :1604 .00981, 2017.

[9] J. Choquette, W. Gandhi, NVIDIA A100 GPU: performance & innovation for GPU
computing, in: 2020 IEEE Hot Chips 32 Symposium, 2020, pp. 1–43.

[10] T. Dettmers, 8-bit approximations for parallelism in deep learning, arXiv :1511 .
04561, 2016.

[11] S. Ghadimi, G. Lan, Stochastic first- and zeroth-order methods for nonconvex
stochastic programming, SIAM J. Optim. 23 (2013) 2341–2368.

[12] P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tul-

loch, Y. Jia, K. He, Accurate, large minibatch SGD: training imagenet in 1 hour,
arXiv :1706 .02677, 2018.

[13] M. Gupta, V. Varma, S. Damani, K.N. Narahari, Compression of deep learning mod-

els for NLP, in: Proceedings of the 29th ACM International Conference on Informa-
tion & Knowledge Management, 2020, pp. 3507–3508.

http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCE5E6CED3380ADEB1FA96F5B7DB6795Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCE5E6CED3380ADEB1FA96F5B7DB6795Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCE5E6CED3380ADEB1FA96F5B7DB6795Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib2E441081A597B6EC47741C98E6EADF25s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib2E441081A597B6EC47741C98E6EADF25s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib2E441081A597B6EC47741C98E6EADF25s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCD8F6D2C96BE6A2DD4D3C3083116A0B0s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCD8F6D2C96BE6A2DD4D3C3083116A0B0s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCD8F6D2C96BE6A2DD4D3C3083116A0B0s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibFB697971430B82170A119DDC95590C81s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibFB697971430B82170A119DDC95590C81s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibFB697971430B82170A119DDC95590C81s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib6EF023B711BF94911A789D1400448732s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib6EF023B711BF94911A789D1400448732s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib6EF023B711BF94911A789D1400448732s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib3FB08392053624B3D034B82AA995E250s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib3FB08392053624B3D034B82AA995E250s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib3FB08392053624B3D034B82AA995E250s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib84B53273B292AB70D881B9E596BF8392s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib84B53273B292AB70D881B9E596BF8392s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib018124F4C34EF7B65F57575A350ACAFCs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib018124F4C34EF7B65F57575A350ACAFCs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib212112EECE862CA4A3DA112F217288FBs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib212112EECE862CA4A3DA112F217288FBs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF74C78B2759E9F2DA5F7D5873F382D56s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF74C78B2759E9F2DA5F7D5873F382D56s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib88FD299DDED7041A81365CCD8BD375BFs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib88FD299DDED7041A81365CCD8BD375BFs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib88FD299DDED7041A81365CCD8BD375BFs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8AD648D262D6DDBCB86FA0AC38D4CC1Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8AD648D262D6DDBCB86FA0AC38D4CC1Fs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8AD648D262D6DDBCB86FA0AC38D4CC1Fs1

L. Dai, L. Gong, Z. An et al.

[14] V. Gupta, D. Choudhary, P.T.P. Tang, X. Wei, X. Wang, Y. Huang, A. Kejariwal, K.
Ramchandran, M.W. Mahoney, Fast distributed training of deep neural networks:
dynamic communication thresholding for model and data parallelism, arXiv :2010 .
08899.

[15] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778.

[16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized neural
networks: training neural networks with low precision weights and activations,
J. Mach. Learn. Res. 18 (2017) 6869–6898.

[17] N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, R. Arora, et al., Communication-

efficient distributed SGD with sketching, Adv. Neural Inf. Process. Syst. 32 (2019)
13144–13154.

[18] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu,
T. Chen, G. Hu, S. Shi, X. Chu, Highly scalable deep learning training system with
mixed-precision: training imagenet in four minutes, arXiv :1807 .11205, 2018.

[19] P. Jiang, G. Agrawal, A linear speedup analysis of distributed deep learning with
sparse and quantized communication, in: Proceedings of the 32nd International Con-

ference on Neural Information Processing Systems, 2018, pp. 2530–2541.

[20] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, C. Guo, A unified architecture for accelerating
distributed DNN training in heterogeneous GPU/CPU clusters, in: Proceedings of the
14th USENIX Conference on Operating Systems Design and Implementation, 2020,
pp. 463–479.

[21] N. Jouppi, C. Young, et al., In-datacenter performance analysis of a tensor process-

ing unit, in: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture, 2017, pp. 1–12.

[22] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S.
Whitehead, A.C. Berg, W.Y. Lo, P. Dollár, R. Girshick, Segment anything, arXiv :
2304 .02643, 2023.

[23] A. Krizhevsky, V. Nair, G. Hinton, Cifar-10, Canadian Institute for Advanced Re-

search, 2010, 5, 4, http://www .cs .toronto .edu /kriz /cifar .html.

[24] Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning, Nature 521 (2015) 436–444.

[25] M. Li, D.G. Andersen, J.W. Park, A.J. Smola, A. Ahmed, V. Josifovski, J. Long, E.J.
Shekita, B.Y. Su, Scaling distributed machine learning with the parameter server,
in: 11th {USENIX} Symposium on Operating Systems Design and Implementation,
2014, pp. 583–598.

[26] M. Li, D.G. Andersen, A.J. Smola, K. Yu, Communication efficient distributed ma-

chine learning with the parameter server, in: Proceedings of the 27th International
Conference on Neural Information Processing Systems, 2014, pp. 19–27.

[27] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B.
Vaughan, P. Damania, S. Chintala, Pytorch distributed: experiences on accelerating
data parallel training, arXiv :2006 .15704, 2020.

[28] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. Schwing, H. Es-

maeilzadeh, N.S. Kim, A network-centric hardware/algorithm co-design to accel-

erate distributed training of deep neural networks, in: 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture, 2018, pp. 175–188.

[29] X. Lian, C. Zhang, H. Zhang, C.J. Hsieh, W. Zhang, J. Liu, Can decentralized algo-

rithms outperform centralized algorithms? A case study for decentralized parallel
stochastic gradient descent, Adv. Neural Inf. Process. Syst. 30 (2017).

[30] Y. Lin, S. Han, H. Mao, Y. Wang, W.J. Dally, Deep gradient compression: reducing
the communication bandwidth for distributed training, arXiv :1712 .01887, 2020.

[31] A.I. Maqueda, A. Loquercio, G. Gallego, N. García, D. Scaramuzza, Event-

based vision meets deep learning on steering prediction for self-driving cars, in:
2018 IEEECVF Conference on Computer Vision and Pattern Recognition, 2018,
pp. 5419–5427.

[32] M. Marcus, B. Santorini, M.A. Marcinkiewicz, Building a large annotated corpus of
English: the Penn Treebank, Technical Report, 1993.

[33] K. Mishchenko, B. Wang, D. Kovalev, P. Richtárik, IntSGD: adaptive floatless com-

pression of stochastic gradients, arXiv :2102 .08374, 2022.

[34] P. Patarasuk, X. Yuan, Bandwidth optimal all-reduce algorithms for clusters of work-

stations, J. Parallel Distrib. Comput. 69 (2009) 117–124.

[35] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo, A generic commu-

nication scheduler for distributed DNN training acceleration, in: Proceedings of the
27th ACM Symposium on Operating Systems Principles, 2019, pp. 16–29.

[36] J. Redmon, S. Divvala, R.B. Girshick, A. Farhadi, You only look once: unified, real-

time object detection, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 779–788.

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M.S. Bernstein, A. Berg, L. Fei-Fei, Imagenet large scale visual recognition
challenge, Int. J. Comput. Vis. 115 (2015) 211–252.

[38] A. Sapio, M. Canini, C.Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy, M.
Moshref, D.R.K. Ports, P. Richtárik, Scaling distributed machine learning with in-

network aggregation, arXiv :1903 .06701, 2020.

[39] A. Sergeev, M.D. Balso, Horovod: fast and easy distributed deep learning in tensor-

flow, arXiv :1802 .05799, 2018.

[40] S. Shi, X. Chu, B. Li, Exploiting simultaneous communications to accelerate data
parallel distributed deep learning, in: IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, 2021, pp. 1–10.

[41] S. Shi, Q. Wang, X. Chu, B. Li, Y. Qin, R. Liu, X. Zhao, Communication-efficient
distributed deep learning with merged gradient sparsification on GPUs, in: IEEE IN-
9

FOCOM 2020-IEEE Conference on Computer Communications, 2020, pp. 406–415.
Journal of Parallel and Distributed Computing 185 (2024) 104811

[42] X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.k Wong, W.c Woo, Convolutional lstm
network: a machine learning approach for precipitation nowcasting, in: Proceedings
of the 28th International Conference on Neural Information Processing Systems,
vol. 1, 2015, pp. 802–810.

[43] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, arXiv :1409 .1556, 2015.

[44] S.U. Stich, J.B. Cordonnier, M. Jaggi, Sparsified SGD with memory, Adv. Neural Inf.
Process. Syst. 31 (2018) 4452–4463.

[45] N. Strom, Scalable distributed DNN training using commodity GPU cloud comput-

ing, in: Interspeech 2015, 2015, pp. 1488–1492.

[46] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective communication
operations in mpich, Int. J. High Perform. Comput. Appl. 19 (2005) 49–66.

[47] Y. Tsuzuku, H. Imachi, T. Akiba, Variance-based gradient compression for efficient
distributed deep learning, arXiv :1802 .06058, 2018.

[48] T. Vogels, S.P.R. Karimireddy, M. Jaggi, PowerSGD: practical low-rank gradient
compression for distributed optimization, Adv. Neural Inf. Process. Syst. 32 (2019)
14236–14245.

[49] W. Wang, N. Srebro, Stochastic nonconvex optimization with large minibatches, in:
Algorithmic Learning Theory, 2019, pp. 857–882.

[50] J. Wu, W. Huang, J. Huang, T. Zhang, Error compensated quantized SGD and its
applications to large-scale distributed optimization, in: International Conference on
Machine Learning, 2018, pp. 5325–5333.

[51] E. Xu, Huawei launches ascend 910, the world’s most powerful ai processor, and
mindspore, an all-scenario ai computing framework, https://www .huawei .com /en /
news /2019 /8 /huawei -ascend -910 -most -powerful -ai -processor. (Accessed 19 July
2021), 2019, Online.

[52] H. Xu, C.Y. Ho, A.M. Abdelmoniem, A. Dutta, E.H. Bergou, K. Karatsenidis, M.
Canini, P. Kalnis, Compressed communication for distributed deep learning: Sur-

vey and quantitative evaluation, Technical Report, 2020.

[53] Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu, F. Dong, C.W. Qiu, et
al., Artificial intelligence: a powerful paradigm for scientific research, Innovation 2
(2021) 100179.

[54] Y. You, Z. Zhang, C.J. Hsieh, J. Demmel, K. Keutzer, Imagenet training in minutes,
in: Proceedings of the 47th International Conference on Parallel Processing, 2018,
pp. 1–10.

[55] L. Zhang, S. Shi, X. Chu, W. Wang, B. Li, C. Liu, Dear: accelerating distributed deep
learning with fine-grained all-reduce pipelining, arXiv :2302 .12445, 2023.

[56] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, X. Jin, Is network the bottleneck of
distributed training?, in: Proceedings of the Workshop on Network Meets AI & ML,
2020, pp. 8–13.

[57] Z. Zong, G. Song, Y. Liu, Detrs with collaborative hybrid assignments training, arXiv :
2211 .12860, 2023.

Lingfei Dai received his B.Eng. degree from China Univer-

sity of Geosciences (Wuhan) in 2020. He is currently pursuing a
master’s degree at the Institute of Computing Technology, Chi-

nese Academy of Sciences. His research interests include edge
intelligence and distributed training.

Luqi Gong received his B.Eng. degree from Shandong Uni-

versity of Science and Technology in 2017 and the M.Eng. degree
from the Chinese Academy of Sciences in 2020. He works as an
engineer from 2020 and his research interests include deep neu-

ral network acceleration and compression.

Zhulin An received the B.Eng. and M.Eng. degrees in com-

puter science from Hefei University of Technology, Hefei, China,
in 2003 and 2006, respectively and the Ph.D. degree from the
Chinese Academy of Sciences, Beijing, China, in 2010. He is cur-

rently an associate professor of Institute of Computing Technol-

ogy, Chinese Academy of Sciences. His current research interests
include optimization of deep neural network and lifelong learn-

ing.

Yongjun Xu received his B.Eng. and Ph.D. degree in com-

puter communication from Xi’an Institute of Posts & Telecoms
(China) in 2001 and Institute of Computing Technology, Chi-

nese Academy of Sciences, Beijing, China in 2006, respectively.
He is a professor at Institute of Computing Technology, Chi-

nese Academy of Sciences in Beijing, China. His current research
interests include artificial intelligence systems, and big data pro-

cessing.

http://refhub.elsevier.com/S0743-7315(23)00181-8/bib79355E7E887707DB4943D895B6026890s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib79355E7E887707DB4943D895B6026890s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib79355E7E887707DB4943D895B6026890s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib79355E7E887707DB4943D895B6026890s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib159992B09E108FBBA759ECB93CFD2147s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib159992B09E108FBBA759ECB93CFD2147s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib159992B09E108FBBA759ECB93CFD2147s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF5163B85CF99BAF77F8B35D41E8C12BCs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF5163B85CF99BAF77F8B35D41E8C12BCs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF5163B85CF99BAF77F8B35D41E8C12BCs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibFE083F4E36019F6233684AB90BA1C0A1s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibFE083F4E36019F6233684AB90BA1C0A1s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibFE083F4E36019F6233684AB90BA1C0A1s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibDA3AB1580F5136FFA580870D59B8DD9Ds1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibDA3AB1580F5136FFA580870D59B8DD9Ds1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibDA3AB1580F5136FFA580870D59B8DD9Ds1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5D5F217C89327D6E17E8CC456270BC3As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5D5F217C89327D6E17E8CC456270BC3As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5D5F217C89327D6E17E8CC456270BC3As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib4B6CEFC74FA121AC99C408F7B4FA0A5Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib4B6CEFC74FA121AC99C408F7B4FA0A5Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib4B6CEFC74FA121AC99C408F7B4FA0A5Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5E4090F3562C358CE2C993128A76F405s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5E4090F3562C358CE2C993128A76F405s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5E4090F3562C358CE2C993128A76F405s1
http://www.cs.toronto.edu/kriz/cifar.html
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibCD8C972DB6C7F0F9FFC54D655BD3EA14s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib95B97DA1E29CF4CA96740F2827A8DE42s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib3BE3F401C944845AB37005DBA1168B30s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib3BE3F401C944845AB37005DBA1168B30s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib3BE3F401C944845AB37005DBA1168B30s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9036BE65A9CFE040F5D0C3DFE60509E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9036BE65A9CFE040F5D0C3DFE60509E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9036BE65A9CFE040F5D0C3DFE60509E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib843612D909B10DF4BFCA91E7AE733257s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib843612D909B10DF4BFCA91E7AE733257s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib843612D909B10DF4BFCA91E7AE733257s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib843612D909B10DF4BFCA91E7AE733257s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib658D48193B6791225C337A9022C667B4s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib658D48193B6791225C337A9022C667B4s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib658D48193B6791225C337A9022C667B4s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA8AFA8F7BF7D51409BCBED40435767E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA8AFA8F7BF7D51409BCBED40435767E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9BFB89AF6F3F36E5C5DCC94626052D71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9BFB89AF6F3F36E5C5DCC94626052D71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9BFB89AF6F3F36E5C5DCC94626052D71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib9BFB89AF6F3F36E5C5DCC94626052D71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib22E1AD7EE4639C303F12EEC5E60D44F0s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib22E1AD7EE4639C303F12EEC5E60D44F0s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5A338714EDB2F4F7AA243046FD34111As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5A338714EDB2F4F7AA243046FD34111As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib64DCBF2469F8F204B3198232ABCB23ABs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib64DCBF2469F8F204B3198232ABCB23ABs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib365598A7855BA0480D94CD25698EEEB1s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib365598A7855BA0480D94CD25698EEEB1s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib365598A7855BA0480D94CD25698EEEB1s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5A222E0F7738FC7A67E42BE83C856769s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5A222E0F7738FC7A67E42BE83C856769s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib5A222E0F7738FC7A67E42BE83C856769s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA73802AF17A4FFD4DEB73C743B78AAD4s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA73802AF17A4FFD4DEB73C743B78AAD4s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA73802AF17A4FFD4DEB73C743B78AAD4s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibAEEE7DA3953D0E547FC397F9CD130391s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibAEEE7DA3953D0E547FC397F9CD130391s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibAEEE7DA3953D0E547FC397F9CD130391s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib648DA71C66DA666C1C154875810EE59As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib648DA71C66DA666C1C154875810EE59As1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF93AD2A60BBDA894B8DBCA5260865FADs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF93AD2A60BBDA894B8DBCA5260865FADs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibF93AD2A60BBDA894B8DBCA5260865FADs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib12D76AF29F212E3CDCFC150DED364E6Cs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib12D76AF29F212E3CDCFC150DED364E6Cs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib12D76AF29F212E3CDCFC150DED364E6Cs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8F10C93504E3EC0E7E2749AB8B5EA78Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8F10C93504E3EC0E7E2749AB8B5EA78Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8F10C93504E3EC0E7E2749AB8B5EA78Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib8F10C93504E3EC0E7E2749AB8B5EA78Es1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibC85CB6A99F3EC5E16974F541C4FCA185s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibC85CB6A99F3EC5E16974F541C4FCA185s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD5005997A1DB776CE374703612AF5A00s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD5005997A1DB776CE374703612AF5A00s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib83AE7EBDB824C6005E0A0DD463AF0A32s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib83AE7EBDB824C6005E0A0DD463AF0A32s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib25BC00504E9A12831DC30618D9AF518Ds1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib25BC00504E9A12831DC30618D9AF518Ds1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD51B6195C4E614D1C236E99DF94FD9F9s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibD51B6195C4E614D1C236E99DF94FD9F9s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib631E3B6E181253C3612F6CCEF91C6BB2s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib631E3B6E181253C3612F6CCEF91C6BB2s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib631E3B6E181253C3612F6CCEF91C6BB2s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibACB198AB3BE5F9081B34944C138AF55Bs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibACB198AB3BE5F9081B34944C138AF55Bs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib006A399096246E63B721BB758A031E6Cs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib006A399096246E63B721BB758A031E6Cs1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib006A399096246E63B721BB758A031E6Cs1
https://www.huawei.com/en/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.huawei.com/en/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibB3EFF4DC84A2D6C189F42D7B6352FC71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibB3EFF4DC84A2D6C189F42D7B6352FC71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibB3EFF4DC84A2D6C189F42D7B6352FC71s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib12834901CBEF4D59E802A2F564FC09E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib12834901CBEF4D59E802A2F564FC09E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib12834901CBEF4D59E802A2F564FC09E7s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibC74A5A985BF5E8276CCFF28FDF42E289s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibC74A5A985BF5E8276CCFF28FDF42E289s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibC74A5A985BF5E8276CCFF28FDF42E289s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA77AC1A7CB627859D1C0A3FC78B39415s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bibA77AC1A7CB627859D1C0A3FC78B39415s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib42ED6F3E7477D76633811AEBA576F2B3s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib42ED6F3E7477D76633811AEBA576F2B3s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib42ED6F3E7477D76633811AEBA576F2B3s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib498E9CFC22F569C851D1645B58C02923s1
http://refhub.elsevier.com/S0743-7315(23)00181-8/bib498E9CFC22F569C851D1645B58C02923s1

Journal of Parallel and Distributed Computing 185 (2024) 104811L. Dai, L. Gong, Z. An et al.

Boyu Diao received the B.Eng. degree in Computer Science
from Beijing Institute of Technology, Beijing, China in 2012 and
the Ph.D. degree in Computer Architecture from Institute of Com-

puting Technology, Chinese Academy of Sciences, Beijing, China.

He is currently an associate professor at Institute of Computing Technology, Chinese
Academy of Sciences. His current research interests include efficient and reliable machine
learning systems, and edge intelligence.
10

	Sketch-fusion: A gradient compression method with multi-layer fusion for communication-efficient distributed training
	1 Introduction
	2 Background
	2.1 Communication in distributed deep learning
	2.2 Gradient compression
	2.3 Computation and communication overlap

	3 Motivation
	3.1 Performance verification
	3.2 Rethinking gradient compression

	4 Method
	4.1 Overview
	4.2 Theoretical guarantee
	4.2.1 Preliminaries
	4.2.2 Sparsified communication

	4.3 Method for searching the optimal fusion strategy

	5 Experiment
	5.1 Training speed improvement
	5.2 Convergence efficiency

	6 Conclusion
	Declaration of competing interest
	Data availability
	References

