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Towards Compressing Efficient Generative
Adversarial Networks for Image Translation via

Pruning and Distilling

Luqi Gong1, Chao Li1(�), Hailong Hong1, and Yongjun Xu1

Institute of Computing Technology, Chinese Academy of Science, Beijing, China
{gongluqi,lichao,honghailong, xyj}@ict.ac.cn

Abstract. Deploying GANs(Generative Adversarial Networks) for Im-
age Translation tasks on edge devices is plagued with the constraints
of storage and computation. Compared to some methods like neural ar-
chitecture search(NAS), filter pruning is an effective DNN(Deep Neural
Network) compressing method. It can compressing DNNs in a short time.
The filter importance is measured by the filter norm, the filters with
low norm are pruned. As for image classification, the filter with larger
norm has larger influence on the final classification scores. However, as
illustrated in Figure 4, the filter with large norm don’t always have a
big impact on the quality of generated images for GANs. Based on the
observation that the filter close to the filters’ center in the same convolu-
tion layer can be represented by others in [8], we develop a distance-based
pruning criterion. We prune the filters which are close to the filters’ center
in a convolution layer. KD(Knowledge distillation) trains the compressed
model and improves its performance. The most common KD method ig-
nores the transformation information across the feature maps, which is
important for GANs. We take them as additional knowledge and transfer
it from the uncompressed GAN to the pruned GAN. Our experiments on
CycleGan, Pix2pix, and GauGan achieved excellent performance. With-
out losing image quality, we obtain 51.68× and 36.20× compression
on parameters and MACs1 respectively on CycleGan. Our code2 will be
made available at github.

Keywords: GAN Compression · Pruning · Knowledge Distillation.

1 Introduction

In recent years, GANs(Generative Adversarial Networks)[6] are frequently pre-
scribed for image generation, image translation, text generation and style trans-
fer. With the development of GANs for image translation tasks, their parameters
and MACs become very large. However, some applications require interaction
with humans and demand low-latency on-device performance for better user ex-
perience. Edge devices (VR headsets, mobile phones, tablets, etc) are tightly

1 Multiply-Accumulate Operations
2 We will open source within one week after the paper being received
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constrained by hardware resources. Deploying the GANs for image translation
tasks on edge devices is limited by the device memory and inference speed. As an
example, the frequently-used CycleGan[22] has 11.37M parameters and 56.83G
MACs, making it difficult to deploy directly on edge devices.

With the observation that DNNs have a large parameter redundancy, model
compression methods have been widely studied to reduce the number of pa-
rameters and MACs in neural networks. The most frequently used methods in-
clude human-designed, neural architecture search(NAS)[4], pruning[7–9, 13], and
KD(knowledge distillation)[15, 17, 18], etc. The above methods mainly compress
the model for image classification and object detection. However, the network
architecture and principle of GANs are different from classical CNN models. As
for GAN compression, the human-designed method can not get rid of a large
number of attempts. NAS consumes large computational complexity due to the
huge search space. However, the pruning method compresses model quickly with
a small amount of manual intervention.

Filter norm is mostly taken as the criterion for CNN model pruning meth-
ods known as the norm-based criterion. For the classification task, neurons with
larger activation contribute more to the final classification scores. This assump-
tion is not suitable for GANs because the GAN’s output is image instead of
classification score. Figure 4(b) verifies that the filter norm can’t represent the
filter importance for GANs. Existing CNN model pruning methods fine-tune the
model by conventional training to improve the model performance. This only
improve part of the compressed model’s performance, which is still far from the
uncompressed model. With the difficulty in restoring the performance of com-
pressed model to the uncompressed by direct training, KD is proved to be an
effective fine-tuning method for GAN in [14, 19]. [14, 19] transfer the uncom-
pressed GAN’s knowledge to the compressed GAN. This way is also performance
limited as they simply make the compressed GAN to mimic the feature maps
of the uncompressed GAN. However, mimicking the generated features of the
uncompressed GAN is only a hard constraint in these works. How the output
images are generated layer by layer from the input is very important implicit in-
formation for GANs. These works ignore transferring this kind of transformation
information.

To address the problems mentioned above, we introduce a general GAN com-
pression framework consisting of distance-based filter pruning and KD guided
by transformation information across feature maps in different layers. In our
GAN pruning method, we calculate the filter center in a convolutional or de-
convolutional layer. Then the filters whose distance to the filter center less than
the threshold are removed. The rest of the filters can achieve the same feature
extraction effect as all the filters because the removed filters are deemed to be
represented by other filters. Our pruning method is used for compressing a small
GAN architecture. After that, the KD is applied to fine-tuning the pruned GAN.
We regard the transformation information across the feature maps as the knowl-
edge and transfer it from the uncompressed GAN to the compressed GAN. This
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kind of knowledge can guide compressed GAN to learn how to generate feature
maps and output images layer by layer.

In summary, the contributions of our paper are summarized as follows:

– Pruning: We propose a filter distance-based pruning method for compress-
ing efficient GANs. It can correctly measure the importance of the convolu-
tional and deconolutional filters in GANs.

– Distillation: In order to restore the quality of the images generated from the
GANs after pruning, the feature maps and their transformation information
are transferred from the original GAN to the pruned GAN. We run the
Pruning-Distillation process iteratively.

– We evaluate our proposed method on three image translation models trained
on four benchmark datasets. We got 51.68× and 36.20× compression on pa-
rameters and MACs respectively without performance dropping for Cycle-
Gan. We compressed the Pix2pix parameters by 22.31×, MACs by 12.46×
at most. The GauGan got 16.49× parameter compression from 93.0M to
5.64M, meanwhile, the MACs were dropped from 281G to 25.63G with a
slight performance decrease.

The rest of the paper is organized as follow. In sec 2, we introduce re-
lated methods of GAN compressing, including stacking human-designed mod-
ules, pruning, neural architecture search, and knowledge distillation. Then our
proposed method are detailed in sec 3. We conduct comparative experiments and
perform extensive analysis of experimental results in sec 4. Finally, we conclude
our paper in sec 5.

2 Related Work

Generally, existing methods compress a meticulous model architecture with
high performance by stacking human-designed CNN modules, pruning the over-
parameterized network, or neural architecture search. After that, they promote
the compressed network’s performance by training or KD.

Stacking Human-designed Modules. ShuffleNet[21], SqueezeNet[11], and
MobileNet[10] compress the model by using the efficient modules designed man-
ually. They stack the well-designed modules to get an efficient CNN network
easily in this way. But they need to design the whole architecture including the
number of layer and filter.

Pruning. Pruning methods remove the redundant connections or convolution
filters. As for connection pruning, it leads to sparse networks. This needs specific
hardware or acceleration library for deployment. Filter pruning methods are
widely used in compressing meticulous CNN model. The most common criterion
to calculate the filter importance is the filter norm. [20] compresses GANs by
pruning filters with low filter norm. This criterion is effective for the classical
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CNN model because neurons with larger activation contribute more to the final
classification scores. However, GANs have different kind of modules such as the
deconvolutional layer. They are used for image generation whose outputs are
images instead of classification scores.

Neural Architecture Search. NAS has been applied to design networks that
are on par or outperform hand-designed architectures. Methods for NAS can be
categorized according to the search space, search strategy, and performance es-
timation strategy used. [19] compresses GANs by developing a co-evolutionary
approach. Generators for two image domains are encoded as two populations
and synergistically optimized for investigating the most important convolution
filters iteratively, obtaining portable architectures of satisfactory performance.
However, this method is designed for specific GANs. GANs compressed by this
method generate images with a poor performance. With the increase of compres-
sion ratio, the metric(FID) drops severely. [5, 14] introduce neural architecture
search(NAS) to GAN compression, and transfer knowledge of multiple interme-
diate representations from the original model to its compressed model. The large
search space leads to big computing resource consumption which is hard to use
in industry.

KD(Knowledge Distillation). KD is used to improve the performance of
compressed model. It extracts the feature maps or outputs and transfers them
from the uncompressed model to the compressed model, aligning them two by
loss function. This method is proven to be effective for GAN compression in [1,
2, 5, 20], but the insufficiency of knowledge makes the compressed GAN difficult
to restore the performance to the uncompressed model. They simply transfer
feature maps from the predesigned student GAN to the teacher GAN. Their
success also depends on the appropriate design of student network architectures.
[1, 2] require us to design the compressed GAN’s architecture including the
number of layer and filter manually. However, setting a GAN architecture with
an accurate model capacity is difficult in a trial-and-error fashion.

3 Method

Our method consists of convolution kernel pruning and KD illustrated in Figure
1. For one step, we prune the GAN model according to a certain step compres-
sion ratio which means the pruning ratio for this step. Then KD is applied to
the pruned GAN. We run the Pruning-KD step iteratively until the accumu-
lated pruning ratio reaches the target pruning ratio or KD can’t restore the
performance of the pruned GAN.

3.1 Notations

Formally, we introduce symbols and notations in this subsection. We assume
that a GAN network has L layers. Input and output channels are represented
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as Ni and Ni+1 respectively for the ith convolutional or deconvolutional layer.
Wi,j ∈ RNi×K×K , i ∈ [1, L], j ∈ [1, Ni+1] represents the jth filter of the ith layer,
where K is the kernel size. We regard F i ∈ RNi+1×w×h as the output feature
maps of the ith layer, where w and h are the width and height, respectively. f
and fstep are the target and step compression ratio, respectively. G and G′ are
the generators for uncompressed GAN and compressed GAN. Their outputs are
G(x) and G′(x)

3.2 Filter Distance-based Pruning Method

Fig. 1. The whole pipeline of our
method. f means the target com-
pression ratio

Fig. 2. The filter distance-based pruning
method for compressing GANs

As showed in [14, 20], some filters are redundant due to their representation
ability can be achieved by other filters. Thus these filters can be pruned. After
pruning, the rest filters can play the same role and get the same performance in
feature extraction as all filters remained.

As illustrated in Figure 2, We take one pruning step as an example. We
calculate the filter center W∗i for the filters Wi = [Wi,1,Wi,2, ...,Wi,Ni+1

] in
the ith layer, i.e.,

W∗i = arg minx∈RNi×K×K

∑
j∈[1,Ni+1]

||x−Wi,j ||2. (1)

The distances between the filters Wi and their center W∗i are used to measure
the importance of filters. They are calculated as d = [d1, d2, ..., dNi+1

] where

dj = ||Wi,j −W∗i ||22. (2)

Top(d, N) is a function that can get the top N values in d. It returns an ordered
decreasing list whose length is N . This operation can evaluate and sort the filter
importance. We note the last value in d as the threshold th by 3. The threshold’s
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Fig. 3. Our KD loss consists of three parts: regular KD loss, paired learning KD loss,
novel KD loss guided by the transformation information

index is N−1. For one step, we set N = (1−fstep)×Ni+1. This achieves pruning
the filters in the ratio of fstep.

th = Top(d, N)[N − 1]. (3)

Finally, we remove the filters in the ith layer whose distance to the center W∗i
is less than the threshold th. The pruned generator for this pruning step are
parameterized with the remaining filters W ′i = [W ′i,1,W

′
i,2, ...,W

′
i,fstep×Ni+1

].
We replace the original convolutional filters Wi with the pruned convolutional
filters W ′i ∈ Rfstep·Ni×K×K . The filters and their parameters are pruned to the
ratio (1− fstep) of the original.

We run the pruning step some times until the cumulative compression ratio
reaches the target compression ratio f .

3.3 Fine-tune Compressed GAN via KD

As illustrated in Figure 3, we introduce transformation information into KD
loss as the additional supervised information. The transformation information
can be defined by the relationship between two intermediate feature maps. The
intermediate feature maps are from two different layers in GAN. This kind of
relationship can be represented as the inner product of these two vectors’ direc-
tions. The vectors are flatten from the feature maps of two different layers.

For a GAN framework, assuming F i ∈ RNi+1×w×h and F j ∈ RNj+1×w×h are
the feature maps for the ith and jth layer, respectively, where Ni+1 and Nj+1

are the number of output channels for the ith and jth layer, and Ni+1 = Nj+1.
F i,m,n ∈ RNi+1 and Fj,m,n ∈ RNj+1 are the (·,m, n) entries of F i and Fj .
Then, the transformation information matrix M ∈ RNi+1×Nj+1 is calculated by

M =

w∑
m=1

h∑
n=1

F i,m,n ×FT
j,m,n

w × h
. (4)
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For a GAN compression task, we can assume that there are N transformation
information matrices denoted as MT

i , i ∈ [1, N ], which are generated by the
uncompressed GAN, and N transformation information matrices denoted as
MS

i , i ∈ [1, N ], which are generated by the compressed GAN. For each pair of
matrices between the teacher and student GANs (MT

i ,M
S
i ), i ∈ [1, N ] with the

same spatial size, we align them by the l2 norm where

LT =

N∑
i=1

||MT
i −MS

i ||22. (5)

We also consider the loss of KD proposed in [14] as LF . In the same way, we
transfer the information of the feature maps FT

j , j ∈ [1,M ] in the uncompressed

GAN to the featuure maps FS
j , j ∈ [1,M ] in the compressed GAN by

LF =

M∑
j=1

||FS
j −FT

j ||22. (6)

Paired image translation task consists of examples {xi, yi}Ni=1, where the cor-
respondence between xi and yi exists. Unpaired doesn’t have this kind of cor-
respondence. For the unpaired image translation task, we can view the uncom-
pressed generator’s output G(x) as ground-truth and train our compressed gen-
erator G′ with an objective Lrec. For the paired setting, we train our compressed
generator G′ with ground-truth y. This objective is formalized as:

Lrec =

{
Ex,y||G(x)− y||22 if paried GANs,

Ex||G(x)−G′(x)||22 if unpaired GANs.
(7)

The final loss is a multi-objective loss as showed in Eq. 8 where α1, α2, α3 are
the coefficients, LGAN is the original loss for adversarial training.

L = LT + α1LF + α2Lrec + α3LGAN . (8)

4 Experiments

4.1 Experimental Settings

Models. CycleGan[22] is an unpaired Image-to-Image translation model. It
transforms the image from a source domain to a target domain. Pix2Pix[12] is
used for supervising Image-to-Image translation. U-Net is the backbone of its
generator which can better retain the pixel-level detail at different resolutions.
GauGan[16] proposed a spatially-adaptive normalization method which can bet-
ter protect semantic details.

Datasets. Cityscapes has 5000 images of driving scenes in 50 cities. Horse ←→
Zebra collects 1187 horse images and 1474 zebra images from ImageNet. Edges
−→ Shoes consists of 50025 images from UTZappos. Map ←→ Aerial has 2194
images downloaded from the Google map.
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Experimental Evaluation Metrics Frechet Inception Distance(FID)[3] uses
the 2048-dimensional activations from the Inception intermediate layer. Then it
models the activations from the real and generated images using the multivariate
Gaussian distribution with mean µ and covariance σ. These statistics are then
used for calculating the FID. The Lower FID is better.

Implementation Details. We first train a generator from scratch, then we
prune it with the step compression ratio 5% and fine-tune it by our KD method.
We carry out the pruning-distillation step above iteratively until the performance
of the compressed GAN can’t restore to the uncompressed GAN or the total
compression ratio reaches the pre-set target compression ratio. For the Pix2pix
and CycleGan, we use 0.0002 as the learning rate through the training procedure.
The batch size is 1 for Cityscapes, Map←→ Aerial, and Horse←→ Zebra as well
as 4 for Edges −→ Shoes, 16 for GauGan. We adopt the Adam optimizer, keeping
the learning rate constant before it linearly decays from the initial learning rate
to 0. We set constant epoch as 100 while decay epoch is 100, 200, 300, or 400
depending on different datasets. Epoch set for compression is the same as from-
scratch training. We use the generator with the best evaluation performance
during training. We adjust α1, α2, α3 to ensure the three loss items are in the
same order of magnitude.

4.2 Detailed Compression Results

Table 1. Experiment Results On Pix2pix,GauGan, CycleGan

Model Dataset Method Parameters MACs mAP/FID

Pix2pix

cityscaps
Original 11.38M 56.80G 35.62
Li et al.[14] 0.71M(16.02×) 5.66G(10.04×) 29.27
Ours 0.58M(19.62×) 3.69G(15.4×) 35.03

edges→shoes
Original 11.38M 56.8G 24.18
Li et al.[14] 0.70M(16.25×) 4.81G(11.81×) 26.60
Ours 0.51M(22.31×) 4.56G(12.46×) 25.96

map→arial photo
Original 11.38M 56.8G 47.76
Li et al.[14] 0.75M(15.17×) 4.68G(12.14×) 48.02
Ours 0.51M(22.31×) 4.56G(12.46×) 47.32

GauGan cityscaps
Original 93.00M 281.00G 58.89
Li et al.[14] 20.40M(4.56×) 31.72G(8.86×) 56.75
Ours 5.64M(16.49×) 25.63G(10.96×) 54.40

CycleGan horse→zebra

Original 11.37M 56.83G 61.53
Shu et al.[19] - 13.40G(4.24×) 96.15
Fu et al.[5] 0.98M(11.60×) 6.39G(8.89×) 83.60
Li et al.[14] 0.34M(33.44×) 2.67G(21.28×) 64.95
Ours 0.22M(51.68×) 1.57G(36.20×) 60.49
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As shown in the Table 1, our method obtained better model performance
and compression ratio.

For CycleGan compressed on horse −→ zebra dataset, we achieved 51.68×
compression on parameters and 36.20× compression on MACs. It is worth men-
tioning that, different from other methods[14, 19], our method compressed the
CycleGan without FID decreases.

For Pix2pix, we conducted experiments on three datasets. The mAP in
Cityscapes drops only 0.1 with a compression ratio of 19.62×. For Map ←→
Aerial and Edges −→ Shoes, we compress their model size by 22.31×, MACs by
12.46×.

GauGan is hard to be compressed in [14] which compressed it 4.56×. We
compressed it 16.49× from 93.00M to 5.64M on parameters, 11× from 281.00G
to 25.63G on MACs with small FID decrease.

4.3 Ablation Study

Table 2. Ablation Study For KD: Train, KD, and Ours mean fine-tuning the com-
pressed GAN by normal training, the method in [14], and our KD method, respectively.

Model Datast
FID

Train KD Ours

CycleGan horse→zebra 67.721 63.5 60.488
Pix2pix edges→shoes 27.37 27.46 25.96

The effectiveness of our pruning method. As illustrated in Figure 4(b),
we calculate the distances between some filters in GAN’s certain layer and their
filter center, we remove each of them. Then the normal training is applied to
them as a fine-tuning process. Experiments show if we remove the filter with a
large distance to the filter center, the GAN’s performance is difficult to restore to
the original GAN. This is because the filters far away from the filter center can’t
be represented by other filters. Such filters should not be removed. The Figure
4(a) shows that the FID after pruning and fine-tuning is not clearly affected by
the L1 norm of the filters, which indicates the norm-based pruning method is
not suitable for GANs.

The advantage of our KD method. Table 2 shows that if we fine-tune the
generator after pruning with the normal training method, the generator can’t
recovery to the original uncompressed performance. When we apply the KD
method in [14], it can get a better generator while our KD method achieves the
best results.

Influence of step compression ratio in our experiment setting. We set
the setp compression ratio to 3%, 5%, 7%, and 10% showed in Table 3. The FID
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(a) L1 norm Pruning Criterion (b) Our pruning Criterion

Fig. 4. The effectiveness of our pruning method

Table 3. Influence of step compression ratio

step compression ratio 3% 5% 7% 10%

FID 60.20 60.49 62.87 60.45

fluctuation along with the different step compression ratio is less than 3, which
means the performance of pruning is not sensitive to this parameter.

5 Conclusion

In our work, we propose a general GAN compression framework. We apply a
filter distance-based pruning method to design a small GAN architecture and
use the KD method guided by transformation information across the feature
maps to improve its image generation ability. Experimental results on different
datasets and models showed that our method compresses GANs to a smaller size
than other methods with minimal model performance dropping.
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